дуплекс или полудуплекс что лучше
ИТ База знаний
Полезно
— Онлайн генератор устойчивых паролей
— Онлайн калькулятор подсетей
— Руководство администратора FreePBX на русском языке
— Руководство администратора Cisco UCM/CME на русском языке
— Руководство администратора по Linux/Unix
Навигация
Серверные решения
Телефония
FreePBX и Asterisk
Настройка программных телефонов
Корпоративные сети
Протоколы и стандарты
Ethtool: как изменить скорость, дуплекс и находить неполадки сетевой карты в Linux
Настраиваем дуплексную связь
Конфигурация вашей сетевой карты напрямую влияет, насколько эффективно взаимодействуют ваши сервера.
Онлайн курс по Linux
Мы собрали концентрат самых востребованных знаний, которые позволят тебе начать карьеру администратора Linux, расширить текущие знания и сделать уверенный шаг к DevOps
Необходимо понимать, как настройки автосогласования, скорости и дуплекса влияют на передачу данных, чтобы успешно поддерживать сетевое соединение. А также расскажем про дополнительные фичи, которые помогут находить и устранять сетевые неполадки.
Что такое полудуплекс, полный дуплекс и автосогласование?
Полудуплексный режим (Half-duplex) позволяет устройству отправлять или получать пакеты по очереди. Устройство, установленное в этот режим, не может выполнять оба действия одновременно.
Когда режим устройства находится в полнодуплексном режиме (Full-duplex), он также может отправлять и получать пакеты одновременно.
Что такое дуплексное несоответствие?
Такое происходит когда устройство с включенным автосогласованием подключается к устройству, которое не использует автосогласование. Конец соединения с активным автосогласованием все еще может определить скорость другого конца, но не может правильно определить дуплексный режим. Как правило, конец соединения с автоматическим согласованием будет использовать полудуплекс, тогда как другой конец может быть в дуплексном режиме. Эта ситуация считается дуплексным несоответствием (duplex mismatch).
Несоответствие дуплекса не прекращает связь полностью. Передача отдельных пакетов и небольших объемов данных не вызывают больших проблем. Однако при отправке большого объема данных с любого конца скорость значительно падает. Соединение работает, но производительность снижается, поскольку скорость передачи данных асимметрична и может привести к потере пакетов.
Как использовать команду Ethtool для настройки параметров сетевого адаптера
Помимо этого, ethtool используется для:
Для установки ethtool используйте следующие команды:
Чтобы продолжить, вам нужно знать имя вашей сетевой карты.
Чтобы найти имя вашей сетевой карты, введите в командном терминале следующую команду:
Вывод покажет нам имя сетевой карты устройства.
В нашем конкретном примере команда выглядит так:
Выходные данные показывают, что текущая скорость равна 1000 Мбит/с, что дуплекс находится в режиме «Full», и что автосогласование включено.
Изменение настроек сетевого адаптера
Команда ethtool [имя_устройства] необходима для подтверждения того, что изменения были применены.
Сохранение настроек
Изменения, сделанные с помощью Ethtool, по умолчанию отменяются после перезагрузки системы.
Чтобы применить пользовательские настройки при каждой загрузке системы, отредактируйте файл для интерфейса устройства:
Добавьте нужные значения в виде строки в конце файла, используя следующий синтаксис:
Сохраните изменения и выйдите из файла.
Теперь изменения применяются после каждой перезагрузки и являются постоянными, если файл не будет изменен снова.
Просмотр статистики интерфейса
Если вы хотите получить статистику о вашей сетевой карте, введите команду:
Вывод этой команды будет выглядеть так:
Физическое расположение конкретного сетевого адаптера
Светодиод начнет мигать, чтобы вы знали, с какой картой вы имеете дело.
Тестирование сетевой карты
Команда ethtool предлагает пару удобных тестов, которые вы можете запустить на сетевой карте:
Давайте запустим онлайн-тест на нашей сетевой карте. Эта команда выглядит так:
После выполнения команда покажет нам результаты:
Учтите, что некоторые устройства не поддерживают offline тестирование.
Информация о драйвере
Чтобы узнать имя драйвера и связанную информацию о драйвере используйте:
Заключение
Онлайн курс по Linux
Мы собрали концентрат самых востребованных знаний, которые позволят тебе начать карьеру администратора Linux, расширить текущие знания и сделать уверенный шаг к DevOps
ИТ База знаний
Полезно
— Онлайн генератор устойчивых паролей
— Онлайн калькулятор подсетей
— Руководство администратора FreePBX на русском языке
— Руководство администратора Cisco UCM/CME на русском языке
— Руководство администратора по Linux/Unix
Навигация
Серверные решения
Телефония
FreePBX и Asterisk
Настройка программных телефонов
Корпоративные сети
Протоколы и стандарты
Режимы передачи данных в сетях
Механизм передачи данных или информации между двумя связанными устройствами, соединенными по сети, называется режимом передачи.
Онлайн курс по Кибербезопасности
Изучи хакерский майндсет и научись защищать свою инфраструктуру! Самые важные и актуальные знания, которые помогут не только войти в ИБ, но и понять реальное положение дел в индустрии
Категории режимов транзакций
Существует три категории режимов передачи:
Симплексный режим
В этом типе режима передачи связь является однонаправленной, то есть данные могут передаваться только в одном направлении. Это означает, что вы не можете отправить сообщение обратно отправителю, как на улице с односторонним движением.
Из этих двух устройств только одно может отправлять или передавать по каналу связи, а другое-только принимать данные.
Симплексную дуплексную передачу можно увидеть между компьютером и клавиатурой. Телевизионное вещание, телевидение и пульт дистанционного управления также являются примерами симплексной дуплексной передачи.
Другой пример симплексной передачи включает в себя акустическую систему. Диктор говорит в микрофон, и голос передается через усилитель, а затем на динамики.
Преимущество Симплексного режима
В этом режиме станция может использовать всю пропускную способность канала связи, поэтому одновременно может передаваться больше данных.
Недостаток Симплексного режима
В основном коммуникации требуют двустороннего обмена данными, но это однонаправленный обмен, поэтому здесь нет связи между устройствами.
Полудуплексный Режим
В полудуплексном режиме каждая станция может также передавать и принимать данные.
Поток сообщений может идти в обоих направлениях, но не одновременно.
Вся пропускная способность канала связи используется в одном направлении за один раз.
В полудуплексном режиме отправитель отправляет данные и ожидает их подтверждения, а если есть какая-либо ошибка, то получатель может потребовать от него повторной передачи этих данных. Благодаря этому возможно обнаружение ошибок.
Примером полудуплексного режима является рация. В рации с одной стороны говорят в микрофон устройства, а с другой-кто-то слушает. После паузы другой говорит, и первое лицо слушает.
Это как однополосная дорога с двунаправленным движением. Пока машины едут в одном направлении, машины, идущие в другую сторону, должны ждать.
Преимущество Полудуплексного режима
В полудуплексном режиме вся пропускная способность канала берется на себя любым из двух устройств, передающих одновременно.
Недостаток Полудуплексного режима
Это вызывает задержку в отправке данных в нужное время, так как когда одно устройство отправляет данные, то другое должно ждать отправки данных.
Полный Дуплексный Режим
В полнодуплексном режиме связь является двунаправленной, то есть поток данных идет в обоих направлениях одновременно.
С обоих концов прием и передача данных возможны одновременно.
Полнодуплексный режим имеет два физически отдельных пути передачи, один из которых предназначен для движения трафика в одном направлении, а другой-для движения трафика в противоположном направлении.
Это один из самых быстрых способов связи между устройствами.
По телефонной линии два человека общаются друг с другом, оба могут говорить и слушать друг друга одновременно, это полнодуплексная передача.
Преимущество Полнодуплексного режима
Обе станции могут отправлять и получать данные одновременно, поэтому емкость канала может быть разделена.
Недостаток Полнодуплексного режима
Полоса пропускания канала связи делится на две части, если между устройствами нет выделенного пути.
Полный курс по Сетевым Технологиям
В курсе тебя ждет концентрат ТОП 15 навыков, которые обязан знать ведущий инженер или senior Network Operation Engineer
Полезно?
Почему?
😪 Мы тщательно прорабатываем каждый фидбек и отвечаем по итогам анализа. Напишите, пожалуйста, как мы сможем улучшить эту статью.
😍 Полезные IT – статьи от экспертов раз в неделю у вас в почте. Укажите свою дату рождения и мы не забудем поздравить вас.
Различия между полнодуплексным и полудуплексным режимами связи
Что означает дуплекс в коммуникациях
Таким образом, это система, которая позволяет поддерживать двустороннюю связь, что является основным сегодня, поскольку она может принимать и отправлять сообщения одновременно.
Мы можем найти разные возможности. Давайте посмотрим, чем отличаются Full Duplex и Half Duplex.
Различия между полным дуплексом и полудуплексом
Полный дуплекс
С одной стороны, мы можем начать объяснять, что Полный дуплекс означает. Этот термин описывает одновременную передачу и прием данных по каналу. Полнодуплексное устройство способно одновременно передавать двунаправленные сетевые данные.
In Полный дуплекс, он имеет лучшую производительность за счет удвоения использования полосы пропускания. Пример использования полного дуплекса на телефоне. Здесь общение является одновременным и двунаправленным. Он также присутствует в сетевых коммутаторах.
Что касается подключений к Интернету, необходимо принять во внимание то, что проводные подключения, которые соединяют кабели Ethernet, являются полнодуплексными. Это позволяет получить лучшую скорость.
Полудуплекс
Можно сказать, что он предлагает низкая производительность по сравнению с полным дуплексом, о чем мы упоминали. Примером того, как им пользоваться, может быть рация. Они оба могут говорить, но не одновременно. Один должен дождаться завершения другого.
Эти Полудуплексные сети потребуется механизм, позволяющий избежать конфликтов данных. Чтобы избежать проблем, вам необходимо проверить, идет ли передача, прежде чем пытаться что-то отправить.
Полудуплекс или половина дуплексный режим присутствует в сетях Wi-Fi. Мы уже знаем, что беспроводные сети все чаще присутствуют в нашей повседневной жизни и заметно улучшились в последние годы, но они все еще имеют определенные проблемы с точки зрения стабильности и не достигают той же скорости, что и проводные сети. Они также необходимы в интернет-центрах.
В конечном итоге мы можем сказать, что основное различие между полудуплексом и полным дуплексом заключается в том, что связь идет в одном направлении или в обоих одновременно. Помимо этого ключевого различия, все остальное заключается в способе использования и в ситуациях, в которых мы собираемся использовать тот или иной вариант.
PacketTrain.NET
Анализ сетевого трафика
Руководство по захвату сетевого трафика. Часть 2 – Скорость, дуплекс и дропы (Перевод)
В первой части серии мы прошлись взглядом по типичным схемам сетей Ethernet и различным ситуациям при захвате трафика. Поэтому в текущей статье (и во всех последующих!) я буду считать, что вы ознакомились с предыдущими частями. Сегодня давайте обсудим, в каком случае скорость интерфейса и режим дуплекса становятся очень важны, и что такое эти «дропы».
Скорость и дуплекс
Есть 2 режима дуплекса, которые можно встретить при работе с сетью Ethernet:
Ну так и что же случится, если одна сторона работает в режиме FDX, а вторая всего лишь в HDX? Ничего хорошего. Узел, который использует FDX, будет думать, что он спокойно может передавать данные когда только пожелает, не понимая, что это вызовет коллизию, если вдруг случится так, что HDX-сосед как раз в этот момент отправляет что-то свое. Называется такая ситуация «duplex mismatch». Что в результате? Скорость передачи упадет до совсем печального уровня (уточним: это считанные килобайты в секунду вместо мегабайтов в секунду на линке в 100 Мбит/с).
Интересный факт 1: Автосогласование
Иногда люди думают, что “10/100 автосогласование” на одной стороне окажется достаточно разумным алгоритмом, чтобы распознать параметры второй стороны, настроенной вручную. Типа: «так, я поставлю на одной стороне 100 Мбит/с + полный дуплекс самостоятельно, а вторая сторона должна это увидеть и подстроиться». Давайте рассмотрим это на примере. Сторона номер 1 (обычно коммутатор) настроена принудительно на “100/полный дуплекс”, сторона номер 2 (обычно ПК) – выставлена на “автосогласование”. Что получится? Правильно, несоответствие, именно этот duplex mismatch:
Почему так происходит? Сторона 2 (ПК, настроенный в “авто”), сообщает: «я могу 10Мбит/с полудуплекс; 10Мбит/с полный дуплекс; 100Мбит/с полудуплекс; 100Мбит/с полный дуплекс». Ну, то есть, перечисляет все свои возможные режимы. А что говорит сторона 1 – коммутатор? А вообще ничего, он же настроен жестко. Из-за этого ПК, который ничего не слышит, на всякий случай переходит в режим полудуплекса (предполагает худшее). И это ещё хорошо, что скорость он все же может обнаружить и все-таки выставит себе 100Мбит/с, а иначе мы бы получили полный сбой соединения – стороны с несогласованной скоростью порта не могут общаться вообще никак!
Поэтому существует такое правило: ставим или обе стороны на авто, или обе вручную! По крайней мере, так было, пока не вышла спецификация 1Гбит/с (IEEE 802.3z), которая содержит небольшое, но важное предписание сообщать о параметрах, даже если узел настроен статически вручную.
По этой причине в последнее время, когда все стали переходить на гигабит и больше, количество проблем с duplex mismatch пошло на убыль.
Интересный факт 2: Полудуплекс на гигабите!
Да, есть такой стандарт: 1Гбит/с, полудуплекс. Ходят слухи, что инженеры (естественно, зная, что полудуплекс – дело прошлого) все равно должны были описать этот режим, чтобы стандарт формально остался в группе 802.3. Которая называется «CSMA-CD», и где CD означает «Collision Detection», а для этого Collision Detection нужен полудуплекс, иначе откуда там взяться коллизиям? 🙂
Что? Опять про дуплекс?
Могу себе представить, что некоторые читатели, снова смотря на главу про полный/полудуплекс, скажут: «чувак, об этом надо было помнить лет 10-15 назад, но сейчас? Сейчас все на полном дуплексе!» Ну, во-первых, этот цикл создавался для начинающих. А, во-вторых, давайте зададим простой, но важный вопрос более знающим читателям:
Сможете ли вы захватить полностью загруженный гигабитный полнодуплексный канал, используя один такой же полнодуплексный порт гигабитной сетевой карты?
И ответ… нет, не сможете.
И так как я уверен, что многие сейчас чешут затылок в размышлениях, давайте углубимся в этот вопрос ещё немного, потому что это по-настоящему важно. Ключевое слово в моем вопросе – «полнодуплексный» гигабитный канал. Как мы помним, это значит, что узел может отправлять и получать данные одновременно.
Ну так что это означает, если мы говорим про гигабитный полнодуплексный канал? 1 гигабит в секунду на прием и 1 гигабит в секудну на отправку (а совсем не 500Мбит/с на прием и 500Мбит/с на отправку, как часто неправильно думают мои ученики на курсах по Wireshark). Итого, когда мы говорим про полнодуплексный гигабитный канал, по факту мы имеем дело с общей скоростью передачи 2 гигабита в секунду (да-да, конечно, если он полностью загружен). То же относится и к 10Гбит FDX – это по сути 20Гбит. 25Гбит означает 50Гбит, 40 означает 80, 100 означает 200, если мы имеем дело с полным дуплексом.
Но все же, и почему мы не сможем захватить такой канал одним портом гигабитной карты? Она же тоже полнодуплексная, правда?
Оно-то так, но карта захвата может только получать трафик, но не отправлять (точнее, не должна бы отправлять, или, по моему мнению, не должна отправлять ни в коем случае). Итак, скорость карты захвата на передачу нам становится полностью неважна и бесполезна. И все, что нас интересует – это скорость карты захвата на прием, а она равна 1 Гбит/с. Выходит, что такой карты мало, для того, чтобы захватить полнодуплексный гигабитный загруженный канал. Потому что он будет иметь в сумме скорость 2 Гбит/с. А мы сможем принять из них только 1 Гбит/с. Нам придется с этим столкнуться ещё позже, но если уже сейчас вы подумали «вот же…», то вы на правильном пути.
Захватываем преамбулу и протокол автосогласования
Захватить преамбулу и делимитер Ethernet-кадра, которые передаются перед самим кадром, практически невозможно. Может, удастся их увидеть на экране осциллографа в медленной сети (10Мбит/с), или получится захватить коллизию (смотрите в предыдущей статье).
А причина в том факте, что сетевая карта передает компьютеру только сами кадры. Ей незачем передавать также всякие служебные вещи, которые происходят где-то в проводах, потому что попросту эти вещи никому кроме самой сетевой карты не нужны и никакого смысла загружать ими ПК нет. Если все-таки очень хочется увидеть эти данные, понадобится как минимум специализированная (читайте: профессиональная и очень дорогая) карта захвата. Никакая обычная потребительская сетевая карта не позволит этого сделать.
Если вы обладатель профессиональной карты захвата совместно с TAP, то вы как минимум сможете захватить импульсы протокола автосогласования, как на рисунке ниже (это только часть, ещё многое происходит позже, но, как видите, эта часть происходит как раз перед переходом в состояние “link up”). Захватывался этот дамп на специализированном устройстве Network General S6040 в комбинации с полнодуплексным оптическим ТАР:
«Дропы»
«Дроп», он же «отброшенный пакет» – это пакет, который по факту был в сети и должен был быть захвачен, но не захватился. Разница «потерянного» (lost) и «отброшенного» (drop) пакетов в том, что потерянный пакет пропал где-то в сети (то есть, на входе нашего порта его уже не было), и в случае, если у нас ТСР, то такой пакет будет переотправлен заново отправителем. Если же пакет не захватился, в дампе отсутствует, но в сети он был, дошел до получателя и никуда по пути не пропал – то это «дроп» То есть отбросили его мы. Примерно ситуация с дропами выглядит так:
Пример дропов в дампе |
Если вы видите в Wireshark сообщение “TCP ACKed unseen segment” (это сообщение генерируется модулем-анализатором ТСР) – это верный признак дропов при захвате: Wireshark видит, что в дампе присутствует ACK (подтверждение) для какого-то пакета данных, а вот самого пакета не видит. Так как узел, участвующий в обмене данными, подтвердил прием, следовательно, пакет с данными дошел до получателя нормально. Просто этот пакет с данными не добрался до нас, до самого Wireshark’а. Всего две основных причины могут быть связаны с этим:
Но все же больше, чем в 95% случаев причиной “недолета” пакетов является первая – было недостаточно производительности устройства захвата. Кстати, ещё один признак дропов – это сообщения “TCP Previous segment not captured”, после которых нет переотправленных пакетов с данными. Подумайте об этом.
Причины дропов
Возможны несколько причин, но все они попадают в категорию «ваше устройство захвата было недостаточно быстро, чтобы захватить весь трафик без потерь». Дропы могут возникнуть по вине коммутатора, ответвителя ТАР, сетевой карты, жесткого диска и даже ЦП или памяти вашего ПК (к примеру, если ваш софт недостаточно оптимизирован). Подведем итог: всё, что угодно, – любое устройство или схема – которые находятся между пакетом в проводе и диском, куда пишется дамп, может стать причиной дропов. Что-то из этого виновато чаще, что-то реже. (Дорогие производители ТАР, следите за своим давлением, мы будем рассматривать ТАР позже, и тогда же уточним, почему дропы могут возникнуть и здесь).
В зависимости от ситуации, дропы могут иметь разную степень критичности.
Критичные дропы
Считаются таковыми, если вам нужна полная информация, и вы не можете себе позволить ни одного потерянного пакета. Зачастую это касается задач сетевой безопасности, когда необходима реконструкция контента, переданного по сети. Если у вас пропал один или несколько пакетов, которые были частью переданного вредоносного файла – вы уже не сможете этот файл полностью восстановить, и его реверс-инжиниринг будет невозможен (или как минимум затруднен).
В другой ситуации у вас может быть задача исследовать причину потерь пакетов – и дропы приведут вас к ложным выводам, просто потому, что вы думали, что пакет был потерян в сети (packet loss), а на самом деле он дропнулся на вашем устройстве захвата. (В случае с ТСР об этом хотя бы косвенно можно догадаться, как написано выше. А вот UDP и другие уже не дадут таких подсказок. – прим. перев.)
Некритичные дропы
Дропы могут раздражать, но быть не настолько критичными, если их влияние в конкретной задаче траблшутинга предсказуемо. Как правило, это требует навыка анализа выше среднего уровня, так как аналитик должен иметь достаточно опыта, чтобы найти причину сбоев даже в присутствии отвлекающих внимание паразитных дропов. Но эти товарищи могут увести неопытного аналитика по ложному пути.
Как пример можно взять анализ ТСР-соединения, которое страдает от симптома «низкая производительность (bad performance)». Здесь аналитик сможет пережить редкие дропы, потому что он видит, что TCP ACK на эти «как бы потерянные» пакеты есть, а значит, эти пакеты потеряли мы сами.
В обратном случае (исследование места реальных потерь пакетов в сети, packet loss), где задача – найти сбойное сетевое устройство, вызывающее потери, вы не можете себе позволить дропы, потому что они исказят всю картину. Вы можете быть не в состоянии разграничить, был ли этот пакет реально потерян кем-то другим, или виновник – вы же сами.
Несущественные дропы
Дропы становятся несущественными, если аналитику и так не нужен был каждый пакет. Например, если он делает снимок характеристик трафика в сети (baselining). Если просто нужно собрать некоторую статистику сети (например, распределение протоколов, «какой процент от всех пакетов у нас НТТР?»), вы можете запросто пережить дропы. Они особо не повлияют на конечный результат (ну, конечно, если у вас их не огромное количество) 🙂
Заключение
Да, я помню, что в первой части говорил, что сегодня мы рассмотрим и сетевые карты, но не хотелось бы делать очень длинную статью, и потому я отложил их на потом. Иначе пришлось бы сокращать другой материал, а это нежелательно. Зато теперь сетевые карты займут свою собственную целую статью.
Что стоит вынести из данной статьи:
– дропы могут быть как большой проблемой, так и не очень;
– полный дуплекс – это скорость больше, чем она кажется на первый взгляд, и если канал загружен, а у вас карта захвата только с одним портом…
Статья переведена и опубликована с разрешения автора (Jasper Bongertz) только для сайта packettrain.net
Использование материала статьи без согласования запрещено!