как доказать что последовательность является арифметической прогрессией
Арифметическая прогрессия. Часть 1
— первый элемент последовательности;
— пятый элемент последовательности;
— «энный» элемент последовательности, т.е. элемент, «стоящий в очереди» под номером n.
Последовательность можно задать тремя способами:
Например, Некто решил заняться личным тайм-менеджментом, и для начала посчитать в течение недели, сколько времени он проводит ВКонтакте. Записывая время в таблицу, он получит последовательность, состоящую из семи элементов:
2. Последовательность можно задать с помощью формулы n-го члена.
В этом случае зависимость значения элемента последовательности от его номера выражается напрямую в виде формулы.
Например, если , то
Чтобы найти значение элемента последовательности с заданным номером, мы номер элемента подставляем в формулу n-го члена.
То же самое мы делаем, если нужно найти значение функции, если известно значение аргумента. Мы значение аргумента подставляем вместо в уравнение функции:
Если, например, , то
Ещё раз замечу, что в последовательности, в отличие от произвольной числовой функции, аргументом может быть только натуральное число.
Например, рассмотрим последовательность ,
Мы можем находить значения членов последовательности один за другим, начиная с третьего:
Арифметической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.
Число называется разностью арифметической прогрессии. Разность арифметической прогрессии может быть положительной, отрицательной, или равной нулю.
Если 0″ title=»d>0″/>, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является возрастающей.
Например, 2; 5; 8; 11;.
Если , то каждый член арифметической прогрессии меньше предыдущего, и прогрессия является убывающей.
Если , то все члены прогрессии равны одному и тому же числу, и прогрессия является стационарной.
Основное свойство арифметической прогрессии:
Посмотрим на рисунок.
, и в то же время
Сложив эти два равенства, получим:
.
Разделим обе части равенства на 2:
Итак, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних:
Больше того, так как
, и в то же время
, то
, и, следовательно,
Каждый член арифметической прогрессии, начиная с l» title=»k>l»/>, равен среднему арифметическому двух равноотстоящих.
Формула го члена.
Мы видим, что для членов арифметической прогрессии выполняются соотношения:
и, наконец,
Мы получили формулу n-го члена.
ВАЖНО! Любой член арифметической прогрессии можно выразить через и . Зная первый член и разность арифметической прогрессии можно найти любой её член.
Сумма n членов арифметической прогрессии.
В произвольной арифметический прогрессии суммы членов, равноотстоящих от крайних равны между собой:
Рассмотрим арифметическую прогрессию, в которой n членов. Пусть сумма n членов этой прогрессии равна .
Расположим члены прогрессии сначала в порядке возрастания номеров, а затем в порядке убывания:
Сложим попарно:
Сумма в каждой скобке равна , число пар равно n.
Итак, сумму n членов арифметической прогрессии можно найти по формулам:
Рассмотрим решение задач на арифметическую прогрессию.
Докажем, что разность между двумя соседними членами последовательности равна одному и тому же числу.
Мы получили, что разность двух соседних членов последовательности не зависит от их номера и является константой. Следовательно, по определению, эта последовательность является арифметической прогрессией.
а) Найдите 31 член прогрессии.
б) Определите, входит ли в данную прогрессию число 41.
а) Мы видим, что ;
Запишем формулу n-го члена для нашей прогрессии.
В общем случае
В нашем случае , поэтому
б) Предположим, что число 41 является членом последовательности. Найдем его номер. Для этого решим уравнение:
Мы получили натуральное значение n, следовательно, да, число 41 является членом прогрессии. Если бы найденное значение n не было бы натуральным числом, то мы бы ответили, что число 41 НЕ является членом прогрессии.
б) Найдите сумму членов полученной прогрессии.
а) Вставим между числами 2 и 8 четыре числа:
Мы получили арифметическую прогрессию, в которой 6 членов.
Найдем разность этой прогрессии. Для этого воспользуемся формулой n-го члена:
Теперь легко найти значения чисел:
б)
Ответ: а) да; б) 30
4. Грузовик перевозит партию щебня массой 240 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что за первый день было перевезено 2 тонны щебня. Определите, сколько тонн щебня было перевезено на двенадцатый день, если вся работа была выполнена за 15 дней.
По условию задачи количество щебня, которое перевозит грузовик, каждый день увеличивается на одно и то же число. Следовательно, мы имеем дело с арифметической прогрессией.
Сформулируем эту задачу в терминах арифметической прогрессии.
За первый день было перевезено 2 тонны щебня: [pmath size=14]a_1=2[/pmath].
Вся работа была выполнена за 15 дней: .
Грузовик перевозит партию щебня массой 240 тонн:
Нам нужно найти .
Сначала найдем разность прогрессии. Воспользуемся формулой суммы n членов прогрессии.
Найдем по формуле n-го члена:
Ответ: 24.
Арифметическая прогрессия свойства и формулы
Определение числовой последовательности
Числовая последовательность — это множество чисел, каждому из которых можно присвоить уникальный номер.
Последовательности можно задавать разными способами:
«Последовательность простых чисел: 4, 6, 10, 19, 21, 33. »
Последовательность yn = C называют постоянной или стационарной.
Арифметическая прогрессия — (an), задана таким соотношением:
a1 = a, an+1= an + d.
Последовательность Фибоначчи — когда каждое следующее число равно сумме двух предыдущих чисел: an+1 = an + an-1.
Пример: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.
Так как алгебраическая числовая последовательность — это частный случай числовой функции, то ряд свойств функций рассматриваются и для последовательностей.
Свойства числовых последовательностей:
Возрастающие и убывающие последовательности называют монотонными последовательностями.
Пример числовой последовательности выглядит так:
В такой математической последовательности каждый номер соответствует одному числу. Это значит, что в последовательности не может быть двух первых чисел и т.д. Первое число (как и любое другое) — всегда одно.
N-ный член алгебраической последовательности — это число с порядковым номером n.
Всю последовательность можно обозначить любой буквой латинского алфавита, например, a. Каждый член этой последовательности — той же буквой с индексом, который равен номеру этого члена: a1, a2. a10. an.
N-ый член последовательности можно задать формулой. Например:
Определение арифметической прогрессии
Так как числовая последовательность — это частный случай функции, которая определена на множестве натуральных чисел, арифметическую прогрессию можно назвать частным случаем числовой последовательности.
Рассмотрим основные определения и как найти арифметическую прогрессию.
Арифметическая прогрессия — это числовая последовательность a1, a2. an. для которой для каждого натурального n выполняется равенство: an+1= an + d, где d — это разность арифметической прогрессии. Описать словами эту формулу можно так: каждый член арифметической прогрессии равен предыдущему, сложенному с одним и тем же числом d. Разность между последующим и предыдущим членами, то есть разность арифметической прогрессии можно найти по формуле:
Если известны первый член a1 и n-ый член прогрессии, разность можно найти так:
Арифметическая прогрессия бывает трех видов: Пример: последовательность чисел 11, 14, 17, 20, 23. — это возрастающая арифметическая прогрессия, так как ее разность d = 3 > 0. Свойство арифметической прогрессии
Переведем с языка формул на русский: каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних с ним членов. Что как раз объясняет название «арифметическая» прогрессия. Рассмотрим пример арифметической прогрессии. Дано: арифметическая прогрессия (an), где a1 = 0 и d = 2. Найти: первые пять членов прогрессии и десятый член прогрессии. Решение арифметической прогрессии: По условиям задачи n = 10, подставляем в формулу: Формулы арифметической прогрессииВ 9 классе проходят все формулы арифметической прогрессии. Давайте узнаем, какими способами ее можно задать: Сумма первых n членов арифметической прогрессии (аn) обозначается Sn:
Формулы нахождения суммы n членов арифметической прогрессии: Чтобы быстрее запомнить формулы можно использовать такую табличку с основными определениями:
Формула n-го члена арифметической прогрессииИз определения арифметической прогрессии следует, что равенство истинно:
Значит, Переведем с языка формул на русский: если мы знаем первый член и разность арифметической прогрессии, то можем найти любой ее член. Арифметическую прогрессию можно назвать заданной, если известен ее первый член и разность. Доказательство формулы n-го члена арифметической прогрессииФормулу n-го члена арифметической прогрессии можно доказать при помощи метода математической индукции. Пусть дано: Нужно доказать: Действительно, Согласно принципу математической индукции формула верна для любого натурального числа. Геометрическая прогрессияГеометрическая прогрессия — это последовательность (bn), в которой каждый последующий член можно найти, если предыдущий член умножить на одно и то же число q. Если последовательность (bn) является геометрической прогрессией, то для любого натурального значения n справедлива зависимость:
Если в геометрической прогрессии (bn) известен первый член b1 и знаменатель q, то можно найти любой член прогрессии: Общий член геометрической прогрессии bn можно вычислить при помощи формулы: Пример 1. 2, 6, 18, 54,… — геометрическая прогрессия b = 2, q = 3. Пример 3. 7, 7, 7, 7,… — геометрическая прогрессия b = 7, q = 1.
|