как понять что уравнение линейное

Линейные уравнения

Примеры линейных уравнений:

Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.

Примеры решения линейных уравнений:

Это линейное уравнение, так как переменная стоит в первое степени.

Попробуем преобразовать его к виду a x = b :

Для начала раскроем скобки:

− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.

Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

Это уравнение не является линейным уравнением.

Особые случаи (встречаются редко, но знать их полезно).

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

Задания для самостоятельного решения

Если корней несколько, запишите их через точку с запятой в порядке возрастания.

Решение:

2 − 3 ( 2 x + 2 ) = 5 − 4 x

Переносим иксы влево, числа вправо:

x = 9 − 2 = − 9 2 = − 4,5

№2. При каком значении x значения выражений 7 x − 2 и 3 x + 6 равны?

Решение:

Приравниваем эти два выражения:

№3. Решите уравнение ( − 5 x + 3 ) ( − x + 6 ) = 0.

Если корней несколько, запишите их через точку с запятой в порядке возрастания.

Решение:

Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю. Чтобы найти все корни данного уравнения, надо приравнять каждый множитель к нулю и оба корня взять в ответ.

( − 5 x + 3 ) ( − x + 6 ) = 0 ⇔ [ − 5 x + 3 = 0 − x + 6 = 0 ⇒ [ − 5 x = − 3 ; − x = − 6 ; ⇒ [ x = − 3 − 5 = 3 5 = 0,6 x = − 6 − 1 = 6 1 = 6

В задании указано, что в ответ надо записать корни в порядке возрастания 0,6 6.

Если корней несколько, запишите их через точку с запятой в порядке возрастания.

Решение:

Раскроем квадраты, используя ФСУ (формулы сокращенного умножения):

x 2 − 2 ⋅ x ⋅ 4 + 4 2 + x 2 + 2 ⋅ x ⋅ 9 + 9 2 − 2 x 2 = 0

Замечаем, что x 2 сокращается:

x 2 − 8 x + 4 2 + x 2 + 18 x + 9 2 − 2 x 2 = 0

− 8 x + 18 x + 16 + 81 = 0

Решение:

Раскроем скобки, используя ФСУ.

( x + 10 ) 2 = ( 5 − x ) 2

x 2 + 2 ⋅ x ⋅ 10 + 10 2 = 5 2 − 2 ⋅ 5 ⋅ x + x 2

x 2 + 20 x + 100 = 25 − 10 x + x 2

x 2 + 20 x + 100 − x 2 + 10 x − 25 = 0

Решение:

Источник

Линейное уравнение

теория по математике 📈 уравнения

Уравнение – это равенство, содержащее переменную, значение которой надо найти.

Уравнение с одним неизвестным, содержащим первую степень, называется линейным уравнением с одной переменной. Стандартный вид линейного уравнения ax+b=0, где a и b некоторые числа, а х – переменная. Также стандартным видом уравнения можно считать и вид ax=b.

Так, например, к линейным относятся уравнения:

6х+21=0; 34–2х=0; 34х=17; 89х=0

Уравнения, содержащие несколько слагаемых с переменной или без нее, а также скобки, называются уравнениями, сводящимися к линейным. То есть при его упрощении должно получиться линейное уравнение стандартного вида. К таким уравнениям могут относиться уравнения вида:

х+12=4х–45; 19х–67=98; х=–32+17х; 7(х+13)=89–14х

Решить уравнение – это значит найти все его корни или доказать, что корней нет.

Что такое корень уравнения?

Вспомним, что корнем уравнения называется значение переменной, при котором уравнение обращается в верное равенство.

Корни линейного уравнения

Наличие корней зависит от коэффициентов а и b.

Рассмотрим нахождение количества корней на примерах.

Здесь коэффициент а отличен от нуля. Значит, уравнение имеет один корень.

Здесь коэффициент а равен нулю, поэтому корней нет.

Здесь оба коэффициента равны нулю, поэтому уравнение имеет множество корней, или, еще можно сказать, что корнем уравнения является любое число.

Чтобы найти корни уравнения, надо его решить, используя алгоритм, по которому из одного уравнения мы сможем получить уравнение, равносильное данному. Сначала вспомним, что при переносе слагаемых из одной части в другую, мы получаем уравнение, равносильное данному. Также можно делить или умножать обе части уравнения на одно и то же число.

Пример №2. Решить уравнение:

В данном уравнении нет скобок, поэтому выполняем перенос слагаемых, изменяя соответственно знаки у тех слагаемых, которые переносим (обычно слагаемые с переменной собираем слева, а без переменной – справа): 2х–9х=10+11. Теперь приводим подобные слагаемые и получаем: –7х=21. Видим, что корень находится действием деления (неизвестный множитель): х=21:(–7). Ответ х=–3.

При оформлении решения запись оформляем следующим образом:

Пример №3. Решить уравнение:

Здесь мы видим скобки, поэтому сначала раскроем их, помня о том, то число 2 в левой части уравнения надо умножить на каждое слагаемое в скобках, а в правой части уравнения перед скобкой стоит «минус», поэтому изменяем знаки у слагаемых при раскрытии скобок: 5х–2х+16=9х–3х–11. Выполняем перенос слагаемых: 5х–2х–9х+3х=–11–16. Приводим подобные: –3х=–27. Находим корень уравнения: х=–27:(–3). Получаем ответ: х=9

Пример №4. Решить уравнение:

Выполним всё по алгоритму: перенос слагаемых и приведение подобных слагаемых. 2х–2х=3+12; 0х=15. Видим, что коэффициент а=0, поэтому запишем ответ – нет корней, так как надо 15:0, а мы знаем правило, что на нуль делить нельзя.

Имеем линейное уравнение:

Следовательно, начинаем решение с переноса слагаемых (с переменной влево, без переменной – вправо): 3х + 7х= – 5 – 2, не забывая изменять знак у слагаемых, которые переносим. Теперь приводим подобные в каждой части, получаем 10х= –7.

Находим неизвестный множитель делением произведения –7 на известный множитель 10, получаем –0,7.

Запись решения выглядит так:

pазбирался: Даниил Романович | обсудить разбор | оценить

Источник

Решение простых линейных уравнений

как понять что уравнение линейное. 5f9ab6121f6fb190860941. как понять что уравнение линейное фото. как понять что уравнение линейное-5f9ab6121f6fb190860941. картинка как понять что уравнение линейное. картинка 5f9ab6121f6fb190860941.

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.

В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

как понять что уравнение линейное. 5f9ac1b08d239958064580. как понять что уравнение линейное фото. как понять что уравнение линейное-5f9ac1b08d239958064580. картинка как понять что уравнение линейное. картинка 5f9ac1b08d239958064580.

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.

А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1.

5х — 15 + 2 = 3х — 2 + 2х — 1

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

Пример 4. Решить: 4(х + 2) = 6 — 7х.

Пример 5. Решить: как понять что уравнение линейное. 5f9ac90d16143867414251. как понять что уравнение линейное фото. как понять что уравнение линейное-5f9ac90d16143867414251. картинка как понять что уравнение линейное. картинка 5f9ac90d16143867414251.

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Пример 7. Решить: 2(х + 3) = 5 — 7х..

Источник

Линейные уравнения. Виды линейных уравнений.

Линейное уравнение — это алгебраическое уравнение. В этом уравнении полная степень составляющих его многочленов равна единице.

Линейные уравнения представляют в таком виде:

Линейное уравнение с одной переменной.

Линейное уравнение с 1-ой переменной приводится к виду:

Число корней зависимо от a и b:

— Когда a=b=0, значит, у уравнения есть неограниченное число решений, так как как понять что уравнение линейное. 943 13d2547efcc4dc1f14bea77810bae943. как понять что уравнение линейное фото. как понять что уравнение линейное-943 13d2547efcc4dc1f14bea77810bae943. картинка как понять что уравнение линейное. картинка 943 13d2547efcc4dc1f14bea77810bae943..

— Когда a=0, b≠ 0, значит, у уравнения нет корней, так как как понять что уравнение линейное. 53 df01cb8a7aebbfbe3e6ff4b3381b5ca3. как понять что уравнение линейное фото. как понять что уравнение линейное-53 df01cb8a7aebbfbe3e6ff4b3381b5ca3. картинка как понять что уравнение линейное. картинка 53 df01cb8a7aebbfbe3e6ff4b3381b5ca3..

— Когда a ≠ 0, значит, у уравнения есть только один корень как понять что уравнение линейное. 680 7a9dc71a02ace592d9b00af5d6ac62c2. как понять что уравнение линейное фото. как понять что уравнение линейное-680 7a9dc71a02ace592d9b00af5d6ac62c2. картинка как понять что уравнение линейное. картинка 680 7a9dc71a02ace592d9b00af5d6ac62c2..

Линейное уравнение с двумя переменными.

Уравнением с переменной x является равенство типа A(x)=B(x), где A(x) и B(x) — выражения от x. При подстановке множества T значений x в уравнение получаем истинное числовое равенство, которое называется множеством истинности этого уравнения либо решение заданного уравнения, а все такие значения переменной — корни уравнения.

Линейные уравнения 2-х переменных представляют в таком виде:

— в общей форме: ax + by + c = 0,

— в форме линейной функции: y = kx + m, где как понять что уравнение линейное. 858 6fd62274c92349ca637d7b174f7d5974. как понять что уравнение линейное фото. как понять что уравнение линейное-858 6fd62274c92349ca637d7b174f7d5974. картинка как понять что уравнение линейное. картинка 858 6fd62274c92349ca637d7b174f7d5974..

Решением либо корнями этого уравнения является такая пара значений переменных (x;y), которая превращает его в тождество. Этих решений (корней) у линейного уравнения с 2-мя переменными неограниченное количество. Геометрической моделью (графиком) данного уравнения есть прямая y=kx+m.

как понять что уравнение линейное. 430 cdace16e603c0ba8cabe12f0a75c8189. как понять что уравнение линейное фото. как понять что уравнение линейное-430 cdace16e603c0ba8cabe12f0a75c8189. картинка как понять что уравнение линейное. картинка 430 cdace16e603c0ba8cabe12f0a75c8189.

Если в уравнении есть икс в квадрате, то такое уравнение называется квадратным уравнением.

Источник

Как решить линейное уравнение? Уравнение прямой? Что такое линейные уравнения?

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ

Что является решением уравнения?
Решением уравнения является нахождение всех его корней или доказательство их отсутствия.

Примеры линейных уравнений:
3x+5=0
x+1=5
2x=0
7x=7
3x+1=x

x^2+4x+4=0(полное квадратное уравнение оно решается по дискриминанту. Как решаются такие уравнение можно узнать здесь.)
1/x+2=0(уравнение гиперболы)
√(x-1)=1(иррациональное уравнение)

Чем отличаются линейные уравнения от не линейных?

У линейных уравнений x всегда находится в первой степени в числители. Если одно из условий не выполняется то уравнение нелинейное.

Как решаются линейные уравнения?

Все что связано с переменной x переносим в одну сторону, а обычные числа в другую. Это называется: “Неизвестные в одну сторону известные в другую”. В итоге корень уравнения будет равен x=-b/a. Рассмотрим на примере:

ПРАКТИЧЕСКАЯ ЧАСТЬ

Сделаем проверку уравнения подставим вместо переменной x полученный корень:
2*(-1)+2=0
-2+2=0
0=0
Решено верно

Сделаем проверку уравнения подставим вместо переменной x полученный корень:
2*(-3)-6=4*(-3)
-6-6=-12
-12=-12
Решено верно

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *