как считать ip адрес и маску подсети
Твой Сетевичок
Все о локальных сетях и сетевом оборудовании
Расчет маски подсети: примеры «для чайников»
В одной из предыдущих статей мы рассказывали, что такое маска подсети, и для чего она может потребоваться. Здесь же коснемся практической части и рассмотрим расчет маски подсети на конкретных примерах.
В чем назначение маски подсети в сочетании с ip-адресом?
Итак,существует пять классов маршрутизации – A, B, C, D, E. Различным организациям выделяются адреса из диапазонов A, B и C, D и E, которые используются для технических и исследовательских нужд.
Однако выделение какой-либо организации (или частному лицу в Интернете) сети из класса В – недопустимое расточительство. Например, вам нужен «белый» адрес для работы в сети Интернет.
Провайдер располагает адресами класса В и выделяет для вас одного сеть 129.16.0.0. Теперь у вас 65534 «белых» адресов, которые вы маловероятно задействуете.
Вот тут и нужна маска подсети. Маска нужна для определения, какая часть адреса относится к сети, а какая – к хосту. Адресация с использованием маски сети называется бесклассовой (от английского Classless Inter-Domain Routing или CIDR).
Маска подсети определена стандартом RFC 917.
Как именно работает и на что влияет маска подсети? Провайдеру, располагающему сетью 129.16.0.0 нет нужды отдавать ее полностью в чье-то ведение. Теперь можно разбить ее, используя маску сети на много подсетей меньшего размера.
Как разделить сеть на подсети с помощью маски подсети?
Возьмем адрес 129.16.10.1 с маской 255.255.255.0. В двоичном виде это будет выглядеть следующим образом:
129.16.10.1 = 10101100.00010000.00001010.00000001
255.255.255.0 = 11111111.11111111.11111111.00000000
Устройство, обрабатывающее IP пакет, сопоставляет адрес и маску и вычисляет, какая часть адреса принадлежит сети, а какая – хосту. Часть маски с единицами определяет сеть, а часть с нулями – хост.
Теперь, используя логическое И, можно рассчитать, как выглядит адрес подсети.
Коротко в десятичном виде эта запись выглядит так: 129.16.10.0 /24.
Почему 24? — Потому что именно столько бит выделено под сеть. Можно сокращать количество устройств и далее, забирая биты хостовой части и отдавая в пользу сетевой, увеличивая количество подсетей. На практике, провайдеры именно так и делают, выделяя каждому клиенту столько адресов, сколько нужно для пользования.
Как научиться считать маски подсети?
Маска подсети всегда представляет собой последовательное количество вначале единиц, а затем – нулей. Маски вида 11011111.11111111.11111111.1100000 быть не может.
Стоить учесть, что для любой подсети работает правило вычисление количества хостов:
Это первый и последний адреса сети: первый – адрес самой сети, последний – адрес широковещательных рассылок.
Еще для наглядности. Рассмотрим, как разделить сеть 192.168.1.0 /24 на две на подсети с помощью маски. Для этого заберем один бит хостовой части в пользу сетевой, получаем 11111111.11111111.11111111.10000000. На выходе у нас две подсети – 192.168.1.0 /25 и 192.168.1.128 /25. (0 и 128 – значения, которые может принять первый бит четвертого октета, 0 и 1 соответственно).
Теперь рассмотрим, как разделить первоначальную сеть на четыре подсети. Для этого отдаем первые два бита из последнего октета в пользу сети:
11111111.11111111.11111111.00000000 = 192.168.1.0
11111111.11111111.11111111.01000000 = 192.168.1.64
11111111.11111111.11111111.10000000 = 192.168.1.128
11111111.11111111.11111111.11000000 = 192.168.1.192
Для чего используется маска подсети?
Деление больших сетей на маленькие используется администраторами для упрощения работы с сетевой инфраструктурой. Использование ограничений для различных департаментов компании удобно реализовывать на группу ПК, нежели отдельно на каждую машину. Кроме того, наличие подсетей уменьшает домены широковещательных рассылок, снижая нагрузку на коммутаторы.
Если два устройства относятся к одной подсети, то общение между ними будет осуществляться напрямую, минуя маршрутизатор. Для того, что бы отправить пакет в другую подсеть, устройство направляет его на свой шлюз по умолчанию, которым является физический или виртуальный интерфейс устройства третьего уровня (L3). Там сверяется адрес получателя с таблицей маршрутизации, и пакет направляется дальше.
Когда на маршрутизатор попадает очередной пакет, он проверяет сеть получателя, чтобы найти совпадение в своей таблице маршрутизации. Если совпадение есть, то пакет перенаправляется в нужный интерфейс, если совпадение отсутствует, то используется маршрут по умолчанию. В случае, когда поддержка бесклассовой маршрутизации не настроена, а пакет не относится к какой-либо сети в таблице маршрутизации, то он будет отброшен.
Например, пакет из сети 192.168.10.0 попадает на роутер, в таблице маршрутизации имеется два маршрута: к сетям 192.168.1.0 и 192.168.2.0, а так же маршрут по умолчанию 0.0.0.0 0.0.0.0. В такой ситуации пакет будет отброшен, так как сеть 192.168.10.0 относится к классу С, а маршрут к такой сети в таблице не существует.
В случае, когда используется бесклассовая маршрутизация, пакет будет отправлен на шлюз по умолчанию – 0.0.0.0 0.0.0.0.
Стоит учесть, что при использовании бесклассовой адресации само понятие «класс» пропадает. Нельзя сказать, что адрес 192.168.1.1 /24 относится к классу С или адрес 10.1.1.1 /24 относится к классу А. Классы были нужны для определения границ сети до тех пор, пока не использовалась маска сети.
Полезные советы для расчета сетевой IP адресации
Очень часто при настройке сети дома или в офисе возникают вопросы, связанные с расчетом сетевой адресации: как разделить выделенную сеть на подсети, какого объема сети отвести для каждого отдела, какие адреса попадают в данную сеть, какая маска у этой сети.
Быстрый расчет IP сетей
В сегодняшней статье мы постараемся отметить основные моменты для быстрого расчета IPv4 сетей. Хоть сейчас и идет постепенный переход на IPv6, все же IPv4 адресация еще долго будет в тренде и умение быстро рассчитывать IPv4 сети многим может пригодиться. Данная статья написана и оформлена совместно с моим коллегой и преподавателем сетевой академии CISCO — Кузьминым Евгением.
Все мы привыкли к отображению IP адреса в виде четырех десятичных чисел, разделенных точками (также их называют октетами, так как они формируются из 8 бит). Все мы знаем, что компьютер для расчетов использует двоичную систему счисления, поэтому для компьютера сетевой адрес, например 192.168.1.1, имеет вид:
11000000 10101000 00000001 00000001
Маска подсети в двоичном виде выглядит как последовательность единиц, а затем нулей и указывает на то, сколько первых битов IP-адреса будут относится к адресу сети (у всех компьютеров в одной сети они будут одинаковые), а остальные биты будут относится к адресу каждого узла (у всех компьютеров в одной сети они будут разные). Есть специальные адреса: адрес сети — адрес, у которого узловая часть состоит из одних нулей, и широковещательный адрес — это адрес, у которого узловая часть состоит из одних единиц. Например, маска вида 255.255.255.0 в двоичном виде выглядит:
11111111 11111111 111111111 00000000
и указывает на то, что первые 24 бита относятся к адресу сети, а последние восемь к адресу конкретного узла в этой сети. Маска сети также может быть записана, как просто число, указывающее количество первых битов, относящихся к адресу сети. В данном случае — 24.
Со стандартными маскам все легко, они имеют вид; 255.0.0.0, 255.255.0.0 и 255.255.255.0 и четко отделяют узловую часть от сетевой по границе каждого октета. Поэтому, для формировани адреса сети, октеты, у которых маска 255, мы не изменяем. а октеты у которых маска 0, превращаем в 0 (для широковещательного адреса в 255). Напимер, для адреса 192.168.25.128 с маской 255.255.0.0, адрес сети будет 192.168.0.0, а широковещательный – 192.168.255.255.
Но когда нужно разделить сети на более мелкие подсети или объединить несколько сетей в одну общую могут возникнуть сложности. Основное — это запомнить, что каждое десятичное число в адресе состоит из 8 двоичных битов, и нужно знать десятичное значение каждого бита, которое является степенью двойки.
Пример 1
Есть IP адрес 192.168.1.37/28, необходимо определить адрес сети и широковещательный адрес.
Пример 2
Есть IP адрес 192.168.1.37/255.255.255.240, необходимо определить адрес сети.
Получаем адрес сети 192.168.1.32
Пример 3
Записать маску вида 255.255.255.240 в маску вида “/x”.
Значит 255.255.255.240 = /28
Пример 4
Записать маску вида /28 в маску вида XXX.XXX.XXX.XXX
Значит маска: 255.255.255.240.
Заключение
Как я уже говорил эта статья была написана и опубликована совместно c моим коллегой Евгением Кузьминым. В будущем мы планируем продолжить писать совместные статьи связанные с сетевыми технологиями и настройкой сетевого оборудования (маршрутизаторы, коммутаторы)
Если вам нужно что-то настроить или получить консультацию по медиасерверам и системам, можете обращаться ко мне и нашей команде через форму контактов.
IP калькулятор
Калькулятор сети производит расчет адреса сети, широковещательного адреса, количество хостов и диапазон допустимых адресов в сети. Для того, чтобы рассчитать эти данные, укажите IP-адрес хоста и маску сети.
Маску сети необходимо указывать в следующем виде: ХХХ.ХХХ.ХХХ.Х. Можно указать эти данные и в «CIDR notation».
Если данные маски сети не указаны, программа обратится к данным, которые обычно используются для сетей этого типа.
Для того, чтобы более наглядно показать, как рассчитываются программой IP-адреса сетей, рассчитанные данные приведены в двоичном формате. Часть адреса перед пробелом отражает сведения о принадлежности к сети. Указанные здесь данные носят название «битов сети». Часть, следующая за пробелом, отвечает за адреса хостов. Они именуются битами хостов. В широковещательном адресе их значение равно единице, в адресе сети оно составляет 0.
Биты, находящиеся в начале, обозначают класс сети. Если сеть находится в Intranet, это необходимо указать отдельно.
Резервация адресов для особых функций
Подсеть | Назначение |
---|---|
0.0.0.0/8 | Адреса источников пакетов «этой» («своей») сети, предназначены для локального использования на хосте при создании сокетов IP. Адрес 0.0.0.0/32 используется для указания адреса источника самого хоста. |
10.0.0.0/8 | Для использования в частных сетях. |
127.0.0.0/8 | Подсеть для коммуникаций внутри хоста. |
169.254.0.0/16 | Канальные адреса; подсеть используется для автоматического конфигурирования адресов IP в случает отсутствия сервера DHCP. |
172.16.0.0/12 | Для использования в частных сетях. |
100.64.0.0/10 | Для использования в сетях сервис-провайдера. |
192.0.0.0/24 | Регистрация адресов специального назначения. |
192.0.2.0/24 | Для примеров в документации. |
192.168.0.0/16 | Для использования в частных сетях. |
198.51.100.0/24 | Для примеров в документации. |
198.18.0.0/15 | Для стендов тестирования производительности. |
203.0.113.0/24 | Для примеров в документации. |
240.0.0.0/4 | Зарезервировано для использования в будущем. |
255.255.255.255 | Ограниченный широковещательный адрес. |
Подсеть | Назначение |
---|---|
192.88.99.0/24 | Используются для рассылки ближайшему узлу. Адрес 192.88.99.0/32 применяется в качестве ретранслятора при инкапсуляции IPv6 в IPv4 (6to4) |
224.0.0.0/4 | Используются для многоадресной рассылки. |
Как рассчитать сеть при помощи калькулятора
Маски и размеры подсетей
IP-адрес и маска подсети
IP-адреса используются для идентификации устройств в сети. Для взаимодействия c другими устройствами по сети IP-адрес должен быть назначен каждому сетевому устройству — компьютерам, серверам, маршрутизаторам, принтерам и т.д. С помощью маски подсети определяется максимально возможное число хостов в конкретной сети.
Знакомство с IP-адресами
Одна часть IP-адреса представляет собой адрес сети, другая — адрес хоста внутри этой сети. Адрес сети используется маршрутизаторами (роутерами) для передачи пакетов в нужные сети, тогда как адрес хоста определяет конкретное устройство в этой сети, которому должны быть доставлены пакеты.
Структура IP-адреса
IP-адрес состоит из четырех частей, записанных в виде десятичных чисел с точками (например, 192.168.1.2). Каждую из этих четырех частей называют октетом. Октет представляет собой восемь двоичных цифр (например, 11000000, или 192 в десятичном виде). Таким образом, каждый октет может принимать в двоичном виде значения от 00000000 до 11111111, или от 0 до 255 в десятичном виде.
Количество двоичных цифр в IP-адресе, которые приходятся на адрес сети, и количество цифр в IP-адресе, приходящееся на адрес хоста, могут быть различными в зависимости от маски подсети.
Частные IP-адреса
У каждого хоста в сети Интернет должен быть уникальный адрес. Если сеть изолирована от Интернета (например, связывают два филиала компании), для хостов можно использовать любые IP-адреса. Однако, уполномоченной организацией по распределению нумерации в сети Интернет (IANA) специально для частных сетей зарезервированы следующие три блока IP-адресов:
Маски подсети
Маска подсети используется для определения того, какие биты являются частью адреса сети, а какие — частью адреса хоста (для этого применяется логическая операция «И»). Маска подсети включает в себя 32 бита. Если бит в маске подсети равен 1, то соответствующий бит IP-адреса является частью адреса сети. Если бит в маске подсети равен 0, то соответствующий бит IP-адреса является частью адреса хоста.
IP-адрес (десятичный) | 192 | 168 | 1 | 2 |
---|---|---|---|---|
IP-адрес (двоичный) | 11000000 | 10101000 | 00000001 | 00000010 |
Маска подсети (десятичная) | 255 | 255 | 255 | 0 |
Маска подсети (двоичная) | 11111111 | 11111111 | 11111111 | 00000000 |
Адрес сети (десятичный) | 192 | 168 | 1 | |
Адрес сети (двоичный) | 11000000 | 10101000 | 00000001 | |
Адрес хоста (десятичный) | 2 | |||
Адрес хоста (двоичный) | 00000010 |
Маски подсети всегда состоят из серии последовательных единиц, начиная с самого левого бита маски, за которой следует серия последовательных нулей, составляющих в общей сложности 32 бита.
1-ый октет | 2-ой октет | 3-ий октет | 4-ый октет | Десятичная | |
---|---|---|---|---|---|
8-битная маска | 11111111 | 00000000 | 00000000 | 00000000 | 255.0.0.0 |
16-битная маска | 11111111 | 11111111 | 00000000 | 00000000 | 255.255.0.0 |
24-битная маска | 11111111 | 11111111 | 11111111 | 00000000 | 255.255.255.0 |
30-битная маска | 11111111 | 11111111 | 11111111 | 11111100 | 255.255.255.252 |
Размер сети
Количество разрядов в адресе сети определяет максимальное количество хостов, которые могут находиться в такой сети. Чем больше бит в адресе сети, тем меньше бит остается на адрес хоста в адресе.
Так как такие два IP-адреса не могут использоваться в качестве идентификаторов отдельных хостов, максимально возможное количество хостов в сети вычисляется следующим образом:
Формат записи
Поскольку маска всегда является последовательностью единиц слева, дополняемой серией нулей до 32 бит, можно просто указывать количество единиц, а не записывать значение каждого октета. Обычно это записывается через слеш после адреса и количество единичных бит в маске.
Например, адрес 192.1.1.0/25 представляет собой адрес 192.1.1.0 с маской 255.255.255.128. Некоторые возможные маски подсети в обоих форматах показаны в следующей таблице.
Маска подсети | Альтернативный формат | Размер адреса хоста | Макс. кол-во хостов |
---|---|---|---|
255.255.255.0 | xxx.xxx.xxx.xxx/24 | 8 бит | 254 |
255.255.255.128 | xxx.xxx.xxx.xxx/25 | 7 бит | 126 |
255.255.255.192 | xxx.xxx.xxx.xxx/26 | 6 бит | 62 |
255.255.255.224 | xxx.xxx.xxx.xxx/27 | 5 бит | 30 |
255.255.255.240 | xxx.xxx.xxx.xxx/28 | 4 бит | 14 |
255.255.255.248 | xxx.xxx.xxx.xxx/29 | 3 бит | 6 |
255.255.255.252 | xxx.xxx.xxx.xxx/30 | 2 бит | 2 |
Формирование подсетей
С помощью подсетей одну сеть можно разделить на несколько. В приведенном ниже примере администратор сети создает две подсети, чтобы изолировать группу серверов от остальных устройств в целях безопасности.
Чтобы разделить сеть 192.168.1.0 на две отдельные подсети, нужно «позаимствовать» один бит из адреса хоста. В этом случае маска подсети станет 25-битной (255.255.255.128 или /25). «Одолженный» бит адреса хоста может быть либо нулем, либо единицей, что дает нам две подсети: 192.168.1.0/25 и 192.168.1.128/25.
Сеть A | Сеть B | |
---|---|---|
IP-адрес подсети | 192.168.1.0/25 | 192.168.1.128/25 |
Маска подсети | 255.255.255.128 | 255.255.255.128 |
Широковещательный адрес | 192.168.1.127 | 192.168.1.255 |
Минимальный IP-адрес хоста | 192.168.1.1 | 192.168.1.129 |
Максимальный IP-адрес хоста | 192.168.1.126 | 192.168.1.254 |
Четыре подсети
В предыдущем примере было показано использование 25-битной маски подсети для разделения 24-битного адреса на две подсети. Аналогичным образом для разделения 24-битного адреса на четыре подсети потребуется «одолжить» два бита идентификатора хоста, чтобы получить четыре возможные комбинации (00, 01, 10 и 11). Маска подсети состоит из 26 бит (11111111.11111111.11111111.11000000), то есть 255.255.255.192.
IPv4 калькулятор подсетей
Параметр | Десятичная запись | Шестнадцатеричная запись | Двоичная запись |
IP адрес | 188.68.217.15 | BC.44.D9.0F | 10111100.01000100.11011001.00001111 |
---|---|---|---|
Префикс маски подсети | /24 | ||
Маска подсети | 255.255.255.0 | FF.FF.FF.00 | 11111111.11111111.11111111.00000000 |
Обратная маска подсети (wildcard mask) | 0.0.0.255 | 00.00.00.FF | 00000000.00000000.00000000.11111111 |
IP адрес сети | 188.68.217.0 | BC.44.D9.00 | 10111100.01000100.11011001.00000000 |
Широковещательный адрес | 188.68.217.255 | BC.44.D9.FF | 10111100.01000100.11011001.11111111 |
IP адрес первого хоста | 188.68.217.1 | BC.44.D9.01 | 10111100.01000100.11011001.00000001 |
IP адрес последнего хоста | 188.68.217.254 | BC.44.D9.FE | 10111100.01000100.11011001.11111110 |
Количество доступных адресов | 256 | ||
Количество рабочих адресов для хостов | 254 |
IPv4 (англ. Internet Protocol version 4) — четвёртая версия интернет протокола (IP). Первая широко используемая версия. Протокол описан в RFC 791 (сентябрь 1981 года), заменившем RFC 760 (январь 1980 года).
IPv4 использует 32-битные (четырёхбайтные) адреса, ограничивающие адресное пространство 4 294 967 296 (2 32 ) возможными уникальными адресами.
Традиционной формой записи IPv4 адреса является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками. Через дробь указывается длина маски подсети.
IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (10.0.0.0/8, 172.16.0.0/12 или 192.168.0.0/16). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR). Согласно данным на сайте IANA, существует пять RIR: ARIN, обслуживающий Северную Америку, а также Багамы, Пуэрто-Рико и Ямайку; APNIC, обслуживающий страны Южной, Восточной и Юго-Восточной Азии, а также Австралии и Океании; AfriNIC, обслуживающий страны Африки; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий Европу, Центральную Азию, Ближний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у IANA, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами. Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.
Есть два способа определения того, сколько бит отводится на маску подсети, а сколько — на IP-адрес. Изначально использовалась классовая адресация (INET), но со второй половины 90-х годов XX века она была вытеснена бесклассовой адресацией (CIDR), при которой количество адресов в сети определяется маской подсети.
Запись IP-адресов с указанием через слэш маски подсети переменной длины также называют CIDR-адресом в противоположность обычной записи без указания маски, в операционных системах типа UNIX также именуемой INET-адресом.
В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов: если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast). Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, в сети 192.168.5.0 с маской 255.255.255.0 пакет с адресом 192.168.5.255 доставляется всем узлам этой сети. Такая рассылка называется широковещательным сообщением (direct broadcast).
IP-адрес называют статическим (постоянным, неизменяемым), если он назначается пользователем в настройках устройства, либо назначается автоматически при подключении устройства к сети и не может быть присвоен другому устройству.
IP-адрес называют динамическим (непостоянным, изменяемым), если он назначается автоматически при подключении устройства к сети и используется в течение ограниченного промежутка времени, указанного в сервисе назначавшего IP-адрес (DHCP).