как узнать адреса подсетей ассист

IPv4 калькулятор подсетей

ПараметрДесятичная записьШестнадцатеричная записьДвоичная запись
IP адрес46.148.235.1742E.94.EB.AE00101110.10010100.11101011.10101110
Префикс маски подсети/24
Маска подсети255.255.255.0FF.FF.FF.0011111111.11111111.11111111.00000000
Обратная маска подсети (wildcard mask)0.0.0.25500.00.00.FF00000000.00000000.00000000.11111111
IP адрес сети46.148.235.02E.94.EB.0000101110.10010100.11101011.00000000
Широковещательный адрес46.148.235.2552E.94.EB.FF00101110.10010100.11101011.11111111
IP адрес первого хоста46.148.235.12E.94.EB.0100101110.10010100.11101011.00000001
IP адрес последнего хоста46.148.235.2542E.94.EB.FE00101110.10010100.11101011.11111110
Количество доступных адресов256
Количество рабочих адресов для хостов254

IPv4 (англ. Internet Protocol version 4) — четвёртая версия интернет протокола (IP). Первая широко используемая версия. Протокол описан в RFC 791 (сентябрь 1981 года), заменившем RFC 760 (январь 1980 года).

IPv4 использует 32-битные (четырёхбайтные) адреса, ограничивающие адресное пространство 4 294 967 296 (2 32 ) возможными уникальными адресами.

Традиционной формой записи IPv4 адреса является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками. Через дробь указывается длина маски подсети.

IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (10.0.0.0/8, 172.16.0.0/12 или 192.168.0.0/16). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR). Согласно данным на сайте IANA, существует пять RIR: ARIN, обслуживающий Северную Америку, а также Багамы, Пуэрто-Рико и Ямайку; APNIC, обслуживающий страны Южной, Восточной и Юго-Восточной Азии, а также Австралии и Океании; AfriNIC, обслуживающий страны Африки; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий Европу, Центральную Азию, Ближний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у IANA, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами. Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Есть два способа определения того, сколько бит отводится на маску подсети, а сколько — на IP-адрес. Изначально использовалась классовая адресация (INET), но со второй половины 90-х годов XX века она была вытеснена бесклассовой адресацией (CIDR), при которой количество адресов в сети определяется маской подсети.

Запись IP-адресов с указанием через слэш маски подсети переменной длины также называют CIDR-адресом в противоположность обычной записи без указания маски, в операционных системах типа UNIX также именуемой INET-адресом.

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов: если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast). Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, в сети 192.168.5.0 с маской 255.255.255.0 пакет с адресом 192.168.5.255 доставляется всем узлам этой сети. Такая рассылка называется широковещательным сообщением (direct broadcast).

IP-адрес называют статическим (постоянным, неизменяемым), если он назначается пользователем в настройках устройства, либо назначается автоматически при подключении устройства к сети и не может быть присвоен другому устройству.

IP-адрес называют динамическим (непостоянным, изменяемым), если он назначается автоматически при подключении устройства к сети и используется в течение ограниченного промежутка времени, указанного в сервисе назначавшего IP-адрес (DHCP).

Источник

IP калькулятор

Калькулятор сети производит расчет адреса сети, широковещательного адреса, количество хостов и диапазон допустимых адресов в сети. Для того, чтобы рассчитать эти данные, укажите IP-адрес хоста и маску сети.

Маску сети необходимо указывать в следующем виде: ХХХ.ХХХ.ХХХ.Х. Можно указать эти данные и в «CIDR notation».
Если данные маски сети не указаны, программа обратится к данным, которые обычно используются для сетей этого типа.

Для того, чтобы более наглядно показать, как рассчитываются программой IP-адреса сетей, рассчитанные данные приведены в двоичном формате. Часть адреса перед пробелом отражает сведения о принадлежности к сети. Указанные здесь данные носят название «битов сети». Часть, следующая за пробелом, отвечает за адреса хостов. Они именуются битами хостов. В широковещательном адресе их значение равно единице, в адресе сети оно составляет 0.

Биты, находящиеся в начале, обозначают класс сети. Если сеть находится в Intranet, это необходимо указать отдельно.

Резервация адресов для особых функций

ПодсетьНазначение
0.0.0.0/8Адреса источников пакетов «этой» («своей») сети, предназначены для локального использования на хосте при создании сокетов IP. Адрес 0.0.0.0/32 используется для указания адреса источника самого хоста.
10.0.0.0/8Для использования в частных сетях.
127.0.0.0/8Подсеть для коммуникаций внутри хоста.
169.254.0.0/16Канальные адреса; подсеть используется для автоматического конфигурирования адресов IP в случает отсутствия сервера DHCP.
172.16.0.0/12Для использования в частных сетях.
100.64.0.0/10Для использования в сетях сервис-провайдера.
192.0.0.0/24Регистрация адресов специального назначения.
192.0.2.0/24Для примеров в документации.
192.168.0.0/16Для использования в частных сетях.
198.51.100.0/24Для примеров в документации.
198.18.0.0/15Для стендов тестирования производительности.
203.0.113.0/24Для примеров в документации.
240.0.0.0/4Зарезервировано для использования в будущем.
255.255.255.255Ограниченный широковещательный адрес.

ПодсетьНазначение
192.88.99.0/24Используются для рассылки ближайшему узлу. Адрес 192.88.99.0/32 применяется в качестве ретранслятора при инкапсуляции IPv6 в IPv4 (6to4)
224.0.0.0/4Используются для многоадресной рассылки.

Как рассчитать сеть при помощи калькулятора

Маски и размеры подсетей

Источник

Маска IP-адреса.

Вопрос о том, что такое *маска IP-адреса*, из чего она состоит и как используется, приходится слышать довольно часто. Самое неприятное, что в Интернете есть много непроверенной, устаревшей и не соответствующей действительности информации. Поэтому постараюсь ответить максимально подробно.

Из скольки бит состоит IP-адрес?

Для вас это простой вопрос, на который вы отвечаете не задумываясь? И ответите правильно, даже если вас разбудят среди ночи? Значит, вы профессиональный айтишник — сетевой инженер или, например, администратор. Если вы засомневались, не беда. Дочитав статью до конца, вы наверняка узнаете много интересного.

Для удобства информация разделена на шесть порций, или небольших глав. Есть мудрая поговорка, что нельзя съесть слона целиком, но можно съесть его по частям. Поехали.

Маска ip адреса общие понятия.

IP-адрес (v4) состоит из 32-бит. Это можно взять в рамочку, как в школьных учебниках. Желательно запомнить и про IPv6 тоже: 128 бит.

Теоретически IPv4-адресов может быть: 2 32 = 2 10 *2 10 *2 10 *2 2 = 1024*1024*1024*4 ≈ 1000*1000*1000*4 = 4 млрд.

Всего 4 миллиарда. Но дальше будет рассмотрено, сколько из них не используется, грубо говоря, съедается.

Как записывается IPv4-адрес? Он состоит из четырёх октетов и записывается в десятичном представлении без начальных нулей, октеты разделяются точками: например, «192.168.11.10».

Если что, октет — это ровно то же самое, что байт. Но если вы скажете «октет» в среде профессионалов, они вас сразу зауважают и вам легче будет сойти за своего.

В заголовке IP-пакета есть поля «source IP» и «destination IP». Это адреса источника: кто посылает и назначения: кому отправлено. Почти как на почтовом конверте. Внутри пакетов у IP-адресов нет никаких масок, и разделителей между октетами тоже нет. Просто 32 бита для адреса назначения и еще 32 для адреса источника.

Однако, когда IP-адрес присваивается интерфейсу — ещё говорят, сетевому адаптеру — компьютера или маршрутизатора, то, кроме самого адреса этого устройства, ему присваивают еще и маску подсети.

Можно повторить, это важно: *маска IP-адреса* НЕ передается в заголовках IP-пакетов.

Компьютерам маска подсети нужна для определения границ. угадайте, чего именно. подсети. Это нужно, чтобы каждый мог определить, кто находится с ним в одной (под)сети, а кто — за ее пределами. Вообще-то можно говорить просто «сети», часто этот термин используют именно в значении «IP-подсеть». Внутри одной сети компьютеры обмениваются пакетами напрямую, но если нужно послать пакет в другую сеть, шлют их шлюзу по умолчанию (это третий параметр, настраиваемый в сетевых свойствах). Вот как это происходит.

Маска подсети — это тоже 32-бита. Но, в отличие от IP-адреса, нули и единицы в ней не могут чередоваться. Всегда сначала идут единицы, потом нули.

Сначала N единиц, потом 32-N нулей. Легко догадаться, что такая форма записи избыточна. Вполне хватило бы числа N, называемого длиной маски. Так и делают: пишут 192.168.11.10/21 вместо 192.168.11.10 255.255.248.0. Обе формы имеют один и тот же смысл, но первая заметно удобнее.

как узнать адреса подсетей ассист. 37473576575f081b3a3.06038039. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-37473576575f081b3a3.06038039. картинка как узнать адреса подсетей ассист. картинка 37473576575f081b3a3.06038039.

Чтобы определить границы подсети, компьютер делает побитовое умножение (логическое И) между IP-адресом и маской, а на выходе получает адрес с обнулёнными битами в позициях нулей маски.

Рассмотрим пример 192.168.11.10/21:

Маска ip адреса, адрес подсети.

Владение двоичной арифметикой обязательно для любого профессионального администратора. Нужно уметь безошибочно переводить IP-адреса из десятичной формы в двоичную и обратно. Это может делаться в уме или на бумажке. Обходиться в таких вопросах без калькулятора — это требование суровой действительности.

Адрес 192.168.8.0 называется адресом подсети. Обратите внимание на все обнулённые биты на позициях, которые соответствуют нулям в маске. Адрес подсети обычно нельзя использовать в качестве адреса для интерфейса того или иного хоста.

Если, наоборот эти же биты превратить в единицы, то получится адрес 192.168.15.255. Такой адрес называется направленным бродкастом (то есть широковещательным) для данной сети. Сейчас особого смысла в нём нет, но когда-то раньше считалось, что все хосты в подсети должны на него откликаться. Сейчас это неактуально, однако этот адрес тоже (обычно) нельзя использовать как адрес хоста.

Получается, из каждой подсети выбрасывается два адреса. Остальные адреса в диапазоне от 192.168.8.1 до 192.168.15.254 включительно — это полноправные адреса хостов внутри подсети 192.168.8.0/21. Их, все без исключения, можно использовать для назначения на компьютерах.

как узнать адреса подсетей ассист. 102925765761c9d0c28.38752530. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-102925765761c9d0c28.38752530. картинка как узнать адреса подсетей ассист. картинка 102925765761c9d0c28.38752530.

Зрительно адрес как бы делится на две части. Та часть адреса, которой соответствуют единицы в маске, является идентификатором подсети — или адресом подсети. Обычно её называют «префикс».

Вторая часть, которой соответствуют нули в маске — это идентификатор хоста внутри подсети.

Очень часто встречается адрес подсети в таком виде:

Когда маршрутизатор прокладывает в сети маршруты для передачи трафика, он оперирует именно префиксами.

Как ни странно, он не интересуется местонахождением хостов внутри подсетей. Об этом знает только шлюз по умолчанию конкретной подсети (технологии канального уровня могут отличаться).

Главное: в отрыве от подсети адрес хоста не используется совсем.

Длина маски подсети.

Количество хостов в подсети определяется как 232-N-2, при этом N — длина маски.

Логичный вывод: чем длиннее маска, тем меньше в ней хостов.

Ещё один полезный логический вывод: максимальной длиной маски для подсети с хостами будет N=30.

Именно сети /30 чаще всего используют для адресации на point-to-point-линках между маршрутизаторами.

Большинство маршрутизаторов сегодня отлично работает и с масками /31, используя адрес подсети (нуль в однобитовой хостовой части) и бродкаст (единица) в качестве адресов интерфейсов. Однако администраторы и сетевые инженеры иногда просто боятся такого подхода, согласно проверенному принципу «мало ли что».

А вот *маска IP-адреса* /32 используется гораздо чаще. С ней удобно работать, во-первых, при адресации так называемых loopback-интерфейсов. Во-вторых, практически невозможно ничего напутать: /32 — это подсеть, состоящая из одного хоста, то есть по сути никакая и не сеть.

как узнать адреса подсетей ассист. 0906157657650446250.04117047. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-0906157657650446250.04117047. картинка как узнать адреса подсетей ассист. картинка 0906157657650446250.04117047.

Если администратору сети приходится оперировать не группами хостов, а индивидуальными машинами, то с каждым разом сеть становится всё менее масштабируемой, в ней резко увеличивается вероятность всяческого бардака и никому не понятных правил. За исключением, наверное, только написания файрвольных правил для серверов: вот там специфичность ценится и котируется.

Другими словами, с пользователями лучше обращаться не индивидуально, а массово, целыми подсетями, иначе сеть быстро станет неуправляемой.

Интерфейс, на котором настроен IP-адрес, иногда могут называть IP-интерфейсом или L3-интерфейсом («эл-три», тема «модель OSI»).

До того как послать IP-пакет, компьютер определяет, попадёт ли адрес назначения в «свою» подсеть. Если ответ положительный, то он шлёт пакет «напрямую», если отрицательный — направляет его шлюзу по умолчанию, то есть маршрутизатору.

Адресом шлюза по умолчанию обычно назначают первый адрес хоста в подсети, хотя это и вовсе не обязательно. В нашем примере адрес шлюза 192.168.8.1 — для красоты.

Маршрутизатор и шлюз подсети.

Наверное, лучше повторить: шлюз и маршрутизатор — это одно и то же!

Из того, о чём говорилось только что, следует достаточно ясный вывод. Маршрутизатор с адресом интерфейса 192.168.8.1 ничего не знает о трафике, передаваемом, например, между хостами 192.168.8.5 и 192.168.8.7.

У начинающих администраторов одна из самых типичных ошибок — желание заблокировать или как-то иначе проконтролировать с помощью шлюза трафик между хостами в одной подсети. На самом деле, чтобы трафик проходил через маршрутизатор, адресат и отправитель должны находиться в разных подсетях.

А отсюда следует, что в сети даже самого маленького предприятия должно быть несколько IP-подсетей (больше двух) и маршрутизатор (точнее, файрвол, но сейчас можно считать эти слова синонимами), который маршрутизирует и контролирует трафик между подсетями.

Важный следующий шаг: разбиение подсетей на более мелкие подсети.

Сеть из нашего примера 192.168.8.0/21 можно разбить на две подсети /22, четыре подсети /23, восемь /24 и так далее. Общее правило, как можно догадаться, такое:

при этом K — количество подсетей с длиной маски Y, которые умещаются в подсеть с длиной маски X.

Агрегация.

Любой приличный айтишник, включая сетевого администратора, должен знать наизусть степени двойки от нуля до 16. Просто для того, чтобы не стыдно было получать зарплату.

Есть такой процесс, называемый агрегацией. Это значит объединение мелких префиксов — с длинной маской подсети, в которых мало хостов — в крупные, с короткой маской подсети, в которых много хостов. Второе название этого же процесса — суммаризация. Запомните, не суммирование!

Агрегация необходима, чтобы минимизировать количество информации, которую использует маршрутизатор для поиска пути передачи в сети.

Пример: провайдеры выдают клиентам множество маленьких блоков по типу /29. При этом весь остальной Интернет об этом даже не подозревает. За каждым провайдером закреплены префиксы намного крупнее — от /19 и выше. Благодаря такой системе в Глобальную таблицу Интернет-маршрутизации заносится намного меньше записей: их число сократилось на несколько порядков.

Составление адресного плана.

Мы помним, что *маска IP-адреса* бывает разной длины. Чем больше длина маски, тем меньше хостов может быть в подсети. Одновременно увеличивается доля «съеденных» адресов на адреса подсети, шлюза по умолчанию и направленного бродкаста.

Пример. Подсеть с маской /29 (232-29 = 8 комбинаций). Здесь остаётся всего пять доступных для реального использования адресов, в процентах это будет 62,5%. Легко поставить себя на место провайдера, которому необходимо выдать тысячам корпоративных клиентов блоки /29. Для него грамотная разбивка IP-пространства на подсети жизненно необходима.

Эту науку ещё называют составлением адресного плана. Каждый, кто разбивает IP-пространство на подсети, должен уметь не только видеть и учитывать множество факторов, но и искать разумные компромиссы.

Если используется большой диапазон адресов, удобно работать с масками, совпадающими по длине с границами октетов.

Пример. Адреса из блоков частного сектора: 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16.

*Маска IP-адреса*: /8, /16, /24 или, соответственно, по-другому 255.0.0.0, 255.255.0.0, 255.255.255.0.

Такой подход серьёзно облегчает работу мозга и снижает нагрузку на калькулятор: не надо постоянно переходить на двоичную систему и биты. Ничего плохого в этом методе нет. Кроме одного: возможности чересчур сильно расслабиться. и наделать ошибок.

Итоги по маске IP-адреса.

Само понятие «классы адресов», о котором нет-нет да и приходится читать/слышать, давно устарело. Уже больше 20 лет назад выяснилось, что длина префикса может быть любой. Если же раздавать адреса блоками по /8, то никакого Интернета не получится. Итак: «классов адресов» не существует!

Другой, мягко говоря, странный термин. Иногда говорят «сеть класса такого-то» по отношению к подсети с той или иной длиной маски. Например, «сеть класса C» про 10.1.2.0/24. или что-то подобное. Знайте, так никогда не скажет серьёзный специалист. Класс сети, когда он ещё существовал, не имел отношения к длине маски и определялся совсем другими факторами — а именно комбинациями битов в адресе. Если классовая адресация использовалась, то длина масок тоже была строго регламентирована. Каждому классу соответствовали маски только строго определённой длины. Хотя бы поэтому подсеть 10.1.2.0/24, как в примере, никогда не принадлежала и не могла принадлежать к классу C.

Но лучше об этом не вспоминать. Важно только вот что. «Под одной крышей» в RFC3330 собраны все существующие глобальные конвенции, которые посвящены специальным значениям разнообразных блоков адресов.

В них блоки 10/8, 172.16/12 и 192.168/16 (написание сокращённое) определяются как диапазоны для частного использования, запрещённые к маршрутизации в интернете. Другими словами, каждый может использовать их по своему усмотрению, в частных целях.

Пусть вас не удивляет способ написания префиксов, когда полностью отбрасывается хостовая часть: он широко применяется и не вызывает разночтений или недоразумений.

Далее, блок 224.0.0.0/4 зарезервирован для мультикаста, и так далее. Но конвенции — это не совсем законы в полном юридическом смысле слова. Их цель — сделать проще и легче административное взаимодействие. Конвенции крайне не рекомендуется нарушать, но до поры до времени никем не запрещено использовать любые адреса для любых целей. Ровно до того момента, пока вы не встречаетесь с внешним миром

Источник

Как определить адрес подсети

Вопрос о том, как узнать маску подсети, может возникать у начинающих системных администраторов и простых людей, которые решили разобраться с вычислительными сетями. В контексте администрирования маски могут быть использованы для разделения сетей на более мелкие и помогают разобраться с неполадками соединения.

Умение вычислить значение маски TCP/IP может быть использовано при подключении нового хоста в сеть и реорганизации корпоративной сетки. Изучение этой проблемы следует начать с понимания того, что она собой представляет и для каких целей используется.

как узнать адреса подсетей ассист. 1456398. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456398. картинка как узнать адреса подсетей ассист. картинка 1456398.

Битовая маска

Маска подсети может называться битовой маской, что является 32-битным значением, которое указывает на одну часть IP, относящуюся к адресации сетевого интерфейса, и на вторую часть, относящуюся к адресации подсетей. Обычно её значение отображается в десятичном виде, в формате ХХХ.ХХХ.ХХХ.ХХХ.

Это определение приближено к профессиональному сленгу и может показаться непонятным. Разобраться с тем, что это такое, поможет конкретный пример.

Предположим, что у нас есть какая-то сеть, в которой присутствует компьютер. В свойствах подключения видно, что его сетевому интерфейсу присвоен IP-адрес и маска подсети.

как узнать адреса подсетей ассист. 1456173. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456173. картинка как узнать адреса подсетей ассист. картинка 1456173.

Далее оба значения приводятся в двоичный вид и вычисляются следующие последовательности:

как узнать адреса подсетей ассист. 1456196. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456196. картинка как узнать адреса подсетей ассист. картинка 1456196.

Теперь надо последовательно умножить каждый разряд IP-адреса в двоичном виде на разряд маски в двоичном виде и в результате будет получено значение,

как узнать адреса подсетей ассист. 1456409. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456409. картинка как узнать адреса подсетей ассист. картинка 1456409.

которое при переводе в десятичный вид будет выглядеть, как

как узнать адреса подсетей ассист. 1456407. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456407. картинка как узнать адреса подсетей ассист. картинка 1456407.

Умножая адрес IP на инвертированное значение маски, получаем последовательность

как узнать адреса подсетей ассист. 1456410. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456410. картинка как узнать адреса подсетей ассист. картинка 1456410.

Возвращая в десятичный вид, получается цифра 199, соответствующая адресу интерфейса хоста.

Сравнив первый и второй результаты, можно сказать, что цифры IP-адреса, которые соотносятся с единицами маски, указывают на адрес подсети. Цифры IP-адреса, соотносящиеся с нулями маски, образуют адрес компьютера в этой подсети.

В итоге маска подсети помогла выяснить по IP, что наш компьютер находится в подсети 192.168.0.0 и имеет в ней адрес 199. Возвращаясь к определению выше, она показала, какая часть IP указывает на подсетку, а какая на адрес хоста.

Как найти маску подсети по классу IP-сети

Совокупность всех IPv4-адресов делится на классы по диапазонам адресов. Всего существует пять, из которых используются A, B, C, D- адреса заложены под мультикасты, и E – зарезервированы на будущее.

Для определения класса адреса необходимо опять перевести его в двоичный вид и посмотреть начало последовательности битов:

как узнать адреса подсетей ассист. 1456181. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456181. картинка как узнать адреса подсетей ассист. картинка 1456181.

Возвращаясь к примеру, который был выше, как узнать маску подсети в нем:

как узнать адреса подсетей ассист. 1456194. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456194. картинка как узнать адреса подсетей ассист. картинка 1456194.

IP-адрес в двоичном виде начинается на 110, значит, он принадлежит к классу C. Ещё один способ, как узнать маску подсети, это запомнить диапазоны принадлежащие классам.

как узнать адреса подсетей ассист. 1456199. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456199. картинка как узнать адреса подсетей ассист. картинка 1456199.

Как узнать маску по префиксу

Для краткости маску можно записывать в виде префикса, который означает количество бит порции сети. Эта система обозначения принята с приходом бесклассовой междоменной маршрутизации (Classless Inter-Doma-in Routing, или CIDR, «сайдр»). Она избавляет от классов, а для идентификации сети может использоваться разное число битов IP. Узнать маску подсети в десятичном и двоичном виде по префиксу проще всего по таблице.

как узнать адреса подсетей ассист. 1456195. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456195. картинка как узнать адреса подсетей ассист. картинка 1456195.

Как рассчитать маску по префиксу CIDR

Привести маску из префикса в десятичный вид просто. Известно, что маска подсети имеет 32 бита, при этом единицы в начале, а нули в конце. Следовательно, нужно:

как узнать адреса подсетей ассист. 1456171. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456171. картинка как узнать адреса подсетей ассист. картинка 1456171.

Последним действием получаем маску в десятичном виде.

Как привести маску подсети из десятичного вида в короткий префикс

Написание маски сети в виде префикса экономит время и место в тексте. Кроме того, это стандартизированное международное отображение и сейчас используется чаще, чем десятичное. Для этого требуется:

как узнать адреса подсетей ассист. 1456175. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456175. картинка как узнать адреса подсетей ассист. картинка 1456175.

Таким образом можно рассчитать префикс CIDR.

Как определить маску подсети с помощью адреса сети и маски сети

Подобное задание часто всплывает на собеседованиях и тестовых заданиях. И также навык пригодится при реорганизации сети предприятия или делении крупной сетки на более мелкие подсети.

Для наглядности стоит вернуться к примеру, который разбирается с первого абзаца.

С помощью адреса 192.168.0.199 и маски сети 255.255.255.0 уже вычислен адрес самой сети, который имеет вид 192.168.0.0. Здесь для использования присутствует 256 адресов. Из них 2 адреса автоматически резервируются:

. 0 — адрес сети и не может быть использован.

Разбирая все по порядку, приведём этот пример в общий вид, применяемый к любой сети.

Число допустимых узлов всегда ограничено. Если перевести маску сети в двоичный вид, то, как уже известно, единицы указывают на адрес подсети, нули – на адрес компьютера.

Бит может возвращать только два значения, два бита — четыре, три бита — восемь и так далее. Выходит, что n-бит возвращают 2^n значения. Исходя из всего, что сказано выше, получается вывод: число хостов (N) в сети вычисляется формулой N = (2^r)—2, в которой r-количество нулей в двоичном виде маски.

Возвращаясь к нашему примеру, производим расчёт:

как узнать адреса подсетей ассист. 1456414. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456414. картинка как узнать адреса подсетей ассист. картинка 1456414.

Получаются те же 254 адреса для раздачи интерфейсам хостов в сети.

Предположим, что предприятию требуется создать подразделение и собрать 20 рабочих компьютеров в подсеть. Рассчитать маску подсети можно следующим образом.

Берём 20 IP и прибавляем к ним 2 адреса, которые будут зарезервированы. Всего требуется 22, самая близкая степень 2 — это 32. В двоичном виде 10 0000. Поскольку сеть, в которой проводится деление, относится к классу С, то маска подсети будет иметь вид:

как узнать адреса подсетей ассист. 1456431. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456431. картинка как узнать адреса подсетей ассист. картинка 1456431.

Максимально в полученной подсети раздать интерфейсам хостов можно 30 адресов.

Как рассчитать маску подсети. Побитный сдвиг

Разбираемся дальше. Маска подсети помогает разбивать крупные сети на более мелкие. Первым делом предопределяется, на какое количество подсетей нужно разбить сеть и сколько максимально хостов в них должно быть.

Предположим, требуется разбить сеть 192.1.1.0 на 6 подсетей, в самой большой планируется разместить максимум 20 узлов. Исходя из этого, производится расчёт.

Определить класс разбиваемой сети. Для примера предложена сеть класса С, маска, используемая по умолчанию 255.255.255.0 или /24.

Выяснить, какое количество бит требуется для шести подсетей. Для этого число сетей округляется до ближайшей степени двойки, это 8. Получается, что требуется 3 бита, так как 8 = 2^3.

Представить маску по умолчанию в двоичный вид для наглядности:

как узнать адреса подсетей ассист. 1456183. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456183. картинка как узнать адреса подсетей ассист. картинка 1456183.

Для создания 6 подсетей требуется забрать 3 бита из октета адреса хоста. К 24 битам адреса сети прибавляется еще 3. В итоге 24+3 = 27.

как узнать адреса подсетей ассист. 1456174. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456174. картинка как узнать адреса подсетей ассист. картинка 1456174.

Остаётся перевести маску в десятичный вид. Последний октет 11100000 – это 224. Получается, маска имеет вид

как узнать адреса подсетей ассист. 1456433. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456433. картинка как узнать адреса подсетей ассист. картинка 1456433.

Либо, обращаясь к CIDR, посчитать количество битов по единицам — 27, и посмотреть значение префикса.

Пользуясь тремя битами и с помощью маски разбиваем подсети. В последнем октете проставляем единицы. Для наглядности это можно сделать в двоичном виде:

как узнать адреса подсетей ассист. 1456186. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456186. картинка как узнать адреса подсетей ассист. картинка 1456186.

Посчитать адреса подсетей можно и без двоичного представления, здесь сделано для наглядного отображения того, почему получаются именно эти адреса, а не другие.

Таким образом можно создать 8 подсетей, но в задании требуется только 6, поэтому остановимся на них.

как узнать адреса подсетей ассист. 1456169. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456169. картинка как узнать адреса подсетей ассист. картинка 1456169.

Времена, когда подобные расчёты проводились вручную, далеко позади. Информация о том, как узнать маску подсети, преподаётся в ВУЗах и на различных курсах. Как правило, её старательно пытаются изучить студенты и профессионалы, которые хотят пройти сертификацию.

Сегодня для облегчения работы системных администраторов и сетевых инженеров существует множество различных калькуляторов. Эти системы могут провести любой расчёт за несколько секунд. Однако прибегать к помощи программ при небольшом объёме данных неинтересно. Иногда проще и быстрее разбить сеть в уме, чем искать нужный ресурс.

как узнать адреса подсетей ассист. 1456226. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-1456226. картинка как узнать адреса подсетей ассист. картинка 1456226.

Понимание того, как производится расчёт маски подсети, необходимо специалисту, даже если он никогда на практике не будет его применять.

Введите IP адрес хоста (сети) и маску сети, чтобы рассчитать адрес broadcast (широковещательный адрес), адрес сети, Cisco wildcard mask, диапазон допустимых адресов в сети и количество хостов.

Маска сети указывается в десятичном формате с разделяющими точками (255.255.255.0) либо в «CIDR notation» RFC 1517 (/25). Если маска сети не введена, используется маска сети по умолчанию установленная для сетей такого класса.

Полученные результаты представлены и в двоичном формате, для лучшего понимания принципов расчета адресов ip-сетей. Биты адресов разделены пробелом: биты до пробела это часть, определяющая принадлежность к сети (биты сети), после пробела – часть отвечающая за адреса хостов в сети (биты хостов). В адресе сети все «биты хостов» равны нулю, в широковещательном адресе все они равны 1.

Cisco wildcard – обратная маска сети, используется в списках доступа (ACL) сетевого оборудования Cisco.

Чтобы разделить сеть на несколько подсетей, введите адрес и маску исходной сети:
В поле маска подсети введите маску вновь создаваемых подсетей и расчитайте результат.

Попробуйте другие значения маски подсети и сравните результаты.

В получившихся масках подсетей, биты, определяющие принадлежность к подсети, показаны другим цветом. Также указывается количество хостов в подсети и другая информация.

IP-адреса используются для идентификации устройств в сети. Для взаимодействия c другими устройствами по сети IP-адрес должен быть назначен каждому сетевому устройству (в том числе компьютерам, серверам, маршрутизаторам, принтерам и т.д.). Такие устройства в сети называют хостами.
С помощью маски подсети определяется максимально возможное число хостов в конкретной сети. Помимо этого, маски подсети позволяют разделить одну сеть на несколько подсетей.

Знакомство с IP-адресами
Одна часть IP-адреса представляет собой номер сети, другая – идентификатор хоста. Точно так же, как у разных домов на одной улице в адресе присутствует одно и то же название улицы, у хостов в сети в адресе имеется общий номер сети. И точно так же, как у различных домов имеется собственный номер дома, у каждого хоста в сети имеется собственный уникальный идентификационный номер – идентификатор хоста. Номер сети используется маршрутизаторами (роутерами, интернет-центрами) для передачи пакетов в нужные сети, тогда как идентификатор хоста определяет конкретное устройство в этой сети, которому должны быть доставлены пакеты.

Структура
IP-адрес состоит из четырех частей, записанных в виде десятичных чисел с точками (например, 192.168.1.1). Каждую из этих четырех частей называют октетом. Октет представляет собой восемь двоичных цифр (например, 11000000, или 192 в десятичном виде).
Таким образом, каждый октет может принимать в двоичном виде значения от 00000000 до 11111111, или от 0 до 255 в десятичном виде.
На следующем рисунке показан пример IP-адреса, в котором первые три октета (192.168.1) представляют собой номер сети, а четвертый октет (16) – идентификатор хоста.

как узнать адреса подсетей ассист. 23537655 c181 41fe ab02 5298e6260870. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-23537655 c181 41fe ab02 5298e6260870. картинка как узнать адреса подсетей ассист. картинка 23537655 c181 41fe ab02 5298e6260870.

Рисунок 1. Номер сети и идентификатор хоста

Количество двоичных цифр в IP-адресе, которые приходятся на номер сети, и количество цифр в адресе, приходящееся на идентификатор хоста, могут быть различными в зависимости от маски подсети.

Частные IP-адреса
У каждого хоста в сети Интернет должен быть уникальный адрес. Если ваши сети изолированы от Интернета (например, связывают два филиала), для хостов без проблем можно использовать любые IP-адреса. Однако, уполномоченной организацией по распределению нумерации в сети Интернет (IANA) специально для частных сетей зарезервированы следующие три блока IP-адресов:

IP-адреса указанных частный подсетей иногда называют «серыми».
IP-адреса можно получить через IANA, у своего провайдера услуг Интернет или самостоятельно назначить из диапазона адресов для частных сетей.

Маски подсети
Маска подсети используется для определения того, какие биты являются частью номера сети, а какие – частью идентификатора хоста (для этого применяется логическая операция конъюнкции – «И»).
Маска подсети включает в себя 32 бита. Если бит в маске подсети равен «1», то соответствующий бит IP-адреса является частью номера сети. Если бит в маске подсети равен «0», то соответствующий бит IP-адреса является частью идентификатора хоста.

Таблица 1. Пример выделения номера сети и идентификатора хоста в IP-адресе

1-ый октет: (192)2-ой октет: (168)3-ий октет: (1)4-ый октет: (2)
IP-адрес (двоичный)11000000101010000000000100000010
Маска подсети (двоичная)11111111111111111111111100000000
Номер сети110000001010100000000001
Идентификатор хоста00000010

Маски подсети всегда состоят из серии последовательных единиц, начиная с самого левого бита маски, за которой следует серия последовательных нулей, составляющих в общей сложности 32 бита.

Маску подсети можно определить как количество бит в адресе, представляющих номер сети (количество бит со значением «1»). Например, «8-битной маской» называют маску, в которой 8 бит – единичные, а остальные 24 бита – нулевые.
Маски подсети записываются в формате десятичных чисел с точками, как и IP-адреса. В следующих примерах показаны двоичная и десятичная запись 8-битной, 16-битной, 24-битной и 29-битной масок подсети.

Таблица 2. Маски подсети

Двоичная
1-ый октет:
Двоичная
2-ой октет:
Двоичная
3-ий октет:

Двоичная
4-ый октет:

Десятичная8-битная
маска11111111000000000000000000000000255.0.0.016-битная
маска11111111111111110000000000000000255.255.0.024-битная
маска11111111111111111111111100000000255.255.255.029-битная
маска11111111111111111111111111111000255.255.255.248

Размер сети
Количество разрядов в номере сети определяет максимальное количество хостов, которые могут находиться в такой сети. Чем больше бит в номере сети, тем меньше бит остается на идентификатор хоста в адресе.
IP-адрес с идентификатором хоста из всех нулей представляет собой IP-адрес сети (192.168.1.0 с 24-битной маской подсети, например). IP-адрес с идентификатором хоста из всех единиц представляет собой широковещательный адрес данной сети (192.168.1.255 с 24-битной маской подсети, например).
Так как такие два IP-адреса не могут использоваться в качестве идентификаторов отдельных хостов, максимально возможное количество хостов в сети вычисляется следующим образом:

Таблица 3. Максимально возможное число хостов

Маска подсети

Размер идентификатора хоста

Максимальное
количество хостов
8 бит255.0.0.024 бит2 24 – 21677721416 бит255.255.0.016 бит2 16 – 26553424 бит255.255.255.08 бит2 8 – 225429 бит255.255.255.2483 бит2 3 – 26

Формат записи
Поскольку маска всегда является последовательностью единиц слева, дополняемой серией нулей до 32 бит, можно просто указывать количество единиц, а не записывать значение каждого октета. Обычно это записывается как «/» после адреса и количество единичных бит в маске.

Например, адрес 192.1.1.0 /25 представляет собой адрес 192.1.1.0 с маской 255.255.255.128. Некоторые возможные маски подсети в обоих форматах показаны в следующей таблице.

Таблица 4. Альтернативный формат записи маски подсети

Маска подсетиАльтернативный
формат записи
Последний октет
(в двоичном виде)
Последний октет
(в десятичном виде)
255.255.255.0/240000 00000
255.255.255.128/251000 0000128
255.255.255.192/261100 0000192
255.255.255.224/271110 0000224
255.255.255.240/281111 0000240
255.255.255.248/291111 1000248
255.255.255.252/301111 1100252

Формирование подсетей
С помощью подсетей одну сеть можно разделить на несколько. В приведенном ниже примере администратор сети создает две подсети, чтобы изолировать группу серверов от остальных устройств в целях безопасности.
В этом примере сеть компании имеет адрес 192.168.1.0. Первые три октета адреса (192.168.1) представляют собой номер сети, а оставшийся октет – идентификатор хоста, что позволяет использовать в сети максимум 2 8 – 2 = 254 хостов.
Сеть компании до ее деления на подсети показана на следующем рисунке.

как узнать адреса подсетей ассист. b8e43ab7 27cf 4e72 8bd6 c86fd86e280f. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-b8e43ab7 27cf 4e72 8bd6 c86fd86e280f. картинка как узнать адреса подсетей ассист. картинка b8e43ab7 27cf 4e72 8bd6 c86fd86e280f.

Рисунок 2. Пример формирования подсетей: до разделения на подсети

Чтобы разделить сеть 192.168.1.0 на две отдельные подсети, можно «позаимствовать» один бит из идентификатора хоста. В этом случае маска подсети станет 25-битной (255.255.255.128 или /25).

«Одолженный» бит идентификатора хоста может быть либо нулем, либо единицей, что дает нам две подсети: 192.168.1.0 /25 и 192.168.1.128 /25.
Сеть компании после ее деления на подсети показана на следующем рисунке. Теперь она включает в себя две подсети, A и B.

как узнать адреса подсетей ассист. a478a684 925c 4d15 9e01 8277a2acb7a1. как узнать адреса подсетей ассист фото. как узнать адреса подсетей ассист-a478a684 925c 4d15 9e01 8277a2acb7a1. картинка как узнать адреса подсетей ассист. картинка a478a684 925c 4d15 9e01 8277a2acb7a1.>

Рисунок 3. Пример формирования подсетей: после деления на подсети

В 25-битной подсети на идентификатор хоста выделяется 7 бит, поэтому в каждой подсети может быть максимум 2 7 – 2 = 126 хостов (идентификатор хоста из всех нулей – это сама подсеть, а из всех единиц – широковещательный адрес для подсети).
Адрес 192.168.1.0 с маской 255.255.255.128 является адресом подсети А, а 192.168.1.127 с маской 255.255.255.128 является ее широковещательным адресом. Таким образом, наименьший IP-адрес, который может быть закреплен за действительным хостом в подсети А – это 192.168.1.1, а наибольший – 192.168.1.126.
Аналогичным образом диапазон идентификаторов хоста для подсети В составляет от 192.168.1.129 до 192.168.1.254.

Пример: четыре подсети
В предыдущем примере было показано использование 25-битной маски подсети для разделения 24-битного адреса на две подсети. Аналогичным образом для разделения 24-битного адреса на четыре подсети потребуется «одолжить» два бита идентификатора хоста, чтобы получить четыре возможные комбинации (00, 01, 10 и 11). Маска подсети состоит из 26 бит (11111111.11111111.11111111.11000000), то есть 255.255.255.192.

Каждая подсеть содержит 6 битов идентификатора хоста, что в сумме дает 2 6 – 2 = 62 хоста для каждой подсети (идентификатор хоста из всех нулей – это сама подсеть, а из всех единиц – широковещательный адрес для подсети).

Таблица 5. Подсеть 1

IP-адрес/маска подсетиНомер сетиЗначение
последнего октета
IP-адрес (десятичный)192.168.1.0
IP-адрес (двоичный)11000000.10101000.00000001.00000000
Маска подсети (двоичная)11111111.11111111.11111111.11000000
Адрес подсети
192.168.1.0
Наименьший идентификатор хоста: 192.168.1.1
Широковещательный адрес
192.168.1.63
Наибольший идентификатор хоста: 192.168.1.62

Таблица 6. Подсеть 2

IP-адрес/маска подсетиНомер сетиЗначение
последнего октета
IP-адрес192.168.1.64
IP-адрес (двоичный)11000000.10101000.00000001.01000000
Маска подсети (двоичная)11111111.11111111.11111111.11000000
Адрес подсети
192.168.1.64
Наименьший идентификатор хоста: 192.168.1.65
Широковещательный адрес
192.168.1.127
Наибольший идентификатор хоста: 192.168.1.126

Таблица 7. Подсеть 3

IP-адрес/маска подсетиНомер сетиЗначение
последнего октета
IP-адрес192.168.1.128
IP-адрес (двоичный)11000000.10101000.00000001.10000000
Маска подсети (двоичная)11111111.11111111.11111111.11000000
Адрес подсети
192.168.1.128
Наименьший идентификатор хоста: 192.168.1.129
Широковещательный адрес
192.168.1.191
Наибольший идентификатор хоста: 192.168.1.190

Таблица 8. Подсеть 4

IP-адрес/маска подсетиНомер сетиЗначение
последнего октета
IP-адрес192.168.1.192
IP-адрес (двоичный)11000000.10101000.00000001.11000000
Маска подсети (двоичная)11111111.11111111.11111111.11000000
Адрес подсети
192.168.1.192
Наименьший идентификатор хоста: 192.168.1.193
Широковещательный адрес
192.168.1.255
Наибольший идентификатор хоста: 192.168.1.254

Пример: восемь подсетей
Аналогичным образом для создания восьми подсетей используется 27-битная маска (000, 001, 010, 011, 100, 101, 110 и 111).
Значения последнего октета IP-адреса для каждой подсети показаны в следующей таблице.

Таблица 9. Восемь подсетей

ПодсетьАдрес подсетиПервый
адрес
Последний
адрес
Широковещательный
адрес
1013031
232336263
364659495
49697126127
5128129158159
6160161190191
7192193222223
8224225254255

Планирование подсетей
Сводная информация по планированию подсетей для сети с 24-битным номером сети приводится в следующей таблице.
Таблица 10. Планирование подсетей для сети с 24-битным номером

Количество «одолженных» битов
идентификатора хоста
Маска подсетиКоличество
подсетей
Количество
хостов в подсети
1255.255.255.128 (/25)2126
2255.255.255.192 (/26)462
3255.255.255.224 (/27)830
4255.255.255.240 (/28)1614
5255.255.255.248 (/29)326
6255.255.255.252 (/30)642
7255.255.255.254 (/31)1281

Пример расчета количества подсетей и хостов в подсети на основе IP-адреса и маски подсети

Приведем пример расчета количества подсетей и хостов для сети 59.124.163.151/27.

/27 – префикс сети или сетевая маска
В формате двоичных чисел 11111111 11111111 11111111 11100000
В формате десятичных чисел 255.255.255.224

В четвертом поле (последний октет) 11100000 первые 3 бита определяют число подсетей, в нашем примере 2 3 = 8.
В четвертом поле (последний октет) 11100000 последие 5 бит определяют число хостов подсети, в нашем примере 2 5 = 32.

Диапазон IP первой подсети 0

31 (32 хоста), но 0 – это подсеть, а 31 – это Broadcast. Таким образом, максимальное число хостов данной подсети – 30.
Первая подсеть: 59.124.163.0
Broadcast первой подсети: 59.124.163.31

Диапазон IP второй подсети с 59.124.163.32 по 59.124.163.63
Вторая подсеть: 59.124.163.32
Broadcast второй подсети: 59.124.163.63

Мы можем высчитать диапазон IP восьмой подсети с 59.124.163.224 по 59.124.163.255
Восьмая подсеть: 59.124.163.224
Broadcast восьмой подсети: 59.124.163.255

В нашем примере IP-адрес 59.124.163.151 находится в пятой подсети.
Пятая подсеть: 59.124.163.128/27
Диапазон IP пятой подсети с 59.124.163.128 по 59.124.163.159
Broadcast пятой подсети: 59.124.163.159

NOTE: Важно! В настоящее время для удобства расчета IP-адресов в подсети и сетевых масок существуют в Интернете специальные онлайн IP-калькуляторы, а также бесплатные программы/утилиты для быстрого и наглядного расчета.

Пользователи, считающие этот материал полезным: 265 из 295

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *