как узнать jedec памяти

СОДЕРЖАНИЕ

Цели стандартизации JEDEC

Объединенный технический совет по разработке электронных устройств характеризует свои усилия по стандартизации следующим образом:

Стандарты и публикации JEDEC призваны служить общественным интересам за счет устранения недопонимания между производителями и покупателями, облегчения взаимозаменяемости и улучшения продуктов, а также оказания помощи покупателю в выборе и получении с минимальной задержкой подходящего продукта для использования другими лицами, не являющимися членами JEDEC, независимо от того, являются ли они стандарт должен использоваться либо внутри страны, либо на международном уровне.

Стандарт JEDEC 100B.01

Единицы информации

В спецификации определены две общие единицы информации:

Префиксы единиц для емкости полупроводниковой памяти

Спецификация цитирует три префикса следующим образом:

В спецификации отмечается, что эти префиксы включены в документ только для отражения общего использования. Он ссылается на стандарт IEEE / ASTM SI 10-1997, в котором говорится, что « такая практика часто приводит к путанице и не рекомендуется ». Однако спецификация JEDEC явно не осуждает обычное использование. В документе также содержится ссылка на описание двоичных префиксов МЭК в Поправке 2 к МЭК 60027-2 «Буквенные символы, используемые в электротехнике» для альтернативной системы префиксов, а также таблица префиксов МЭК в примечании. Однако спецификация JEDEC явно не включает префиксы IEC в список общих терминов и определений.

JESD21-C

Стандарт JESD21-C: Configurations for Solid State Memories поддерживается комитетом JEDEC JC41. Этот комитет состоит из членов от производителей микропроцессоров, ИС памяти, модулей памяти и других компонентов, а также от интеграторов компонентов, таких как производители видеокарт и персональных компьютеров. Стандарт 21 публикуется в формате папки с отрывными листами для частого обновления.

Документация современных модулей памяти, такая как стандарты для микросхем памяти и эталонный дизайн модуля, требует более ста страниц. Стандарты определяют физические и электрические характеристики модулей и включают данные для компьютерного моделирования модуля памяти, работающего в системе.

Модули памяти типа DDR2-SDRAM доступны для портативных, настольных и серверных компьютеров с широким выбором емкости и скорости доступа. Стандарты определяют форматы этикеток модулей памяти для рынков конечных пользователей. Например:

Емкость хранения

Словарь терминов JEDEC включает определения префиксов киби (Ki), mebi (Mi), гиби (Gi) и tebi (Ti) как степени двойки и килограмм, мега-, гига и тера как степени 10. Например,

2 40 tebi Ti tera + двоичный: (2 10 ) 4 = 1 099 511 627 776 тера: (10 3 ) 4

Источник

JEDEC опубликовала стандарт памяти DDR5, анализируем, сколько времени будет актуальна DDR4. Вспоминаем, как DDR4 вытесняла DDR3

Появление нового стандарта памяти всегда вызывает переполох в рядах компьютерных энтузиастов. Ведь это делает память предыдущего стандарта морально и технически устаревшей, как и процессорные платформы, ориентированные на нее.

реклама

Опытные пользователи, которые застали времена памяти DDR, DDR2, помнят, как и насколько быстро проходила смена поколений памяти и сейчас я расскажу вам об этом.

реклама

Слайд с сайта JEDEC показывает, в какие годы происходила смена поколений и какие приросты скоростей несла.

Я прекрасно помню, как внедрялась память стандарта DDR3, и покупая быстрые планки DDR2 в 2008 году к Core 2 Duo, я нисколько не переживал. Точно также я проапгрейдился на тупиковую DDR3 в 2014 году и сейчас, в 2020 году, купил набор неплохой памяти DDR4.

реклама

И сейчас я объясню вам, почему DDR4 будет жить еще долго и переживать по поводу скорого выхода DDR5 не стоит.

реклама

Даже архитектура Broadwell, сменившая Haswell, работала как с DDR4, так и с DDR3 памятью.

Первые годы после выхода DDR4, обладатели платформ с DDR3 не чувствовали себя обделенными, но уже старались ориентироваться на более быстрые модули DDR3 1866 МГц с низкими задержками, типа 11-11-11-32 и даже ниже.

Я помню даже эпические многосерийные «срачи» между техноблогерами старой закалки, не признававших нужность быстрой памяти и теми, кто уже попробовал своими руками прирост от быстрой памяти.

Например, Zen+ и Zen 2 максимальный прирост производительности получают, когда память переваливает за 3200 МГц и поднимается до 3600 МГц примерно. Дальнейший рост частоты памяти, даже с сохранением низких таймингов, дает уже слишком малый прирост производительности.

Процессоры от Intel берут более высокие частоты DDR4, но и у них рост ее частот выше 4000 МГц дает в играх и рабочих задачах крайне мало.

Поэтому и Zen 3, даже если принесет поддержку более скоростных модулей памяти и прирост IPC (производительности на такт) в пределах 15-20%, вполне удовлетворится памятью DDR4 3800-4000 МГц.
А если у вас еще более слабые процессоры и апгрейд не планируется, то можете брать DDR4 смело, вам хватит ее еще очень и очень надолго.

Кстати о приросте скоростей, вот еще один слайд, показывающий прирост DDR5-4800, начальной по скорости в новом поколении. И прирост на одних частотах с DDR4 только за счет оптимизаций.

И если вам хочется играть в Cyberpunk 2077, Horizon Zero Dawn, Assassin’s Creed Valhalla на максимальных настройках в этом году, то не ждите и делайте апгрейд.

Источник

Почему вам стоит разгонять оперативную память (это легко!)

как узнать jedec памяти. 906957e7439f8fd45263d9a4d49ec593. как узнать jedec памяти фото. как узнать jedec памяти-906957e7439f8fd45263d9a4d49ec593. картинка как узнать jedec памяти. картинка 906957e7439f8fd45263d9a4d49ec593.

Любая программа на ПК использует для работы оперативную память, RAM. Ваша RAM работает на определённой скорости, заданной производителем, но несколько минут копания в BIOS могут вывести её за пределы стандартных спецификаций.

Да, скорость работы памяти имеет значение

Каждая запускаемая вами программа загружается в память с вашего SSD или жёсткого диска, скорость работы которых гораздо ниже, чем у памяти. После загрузки программа обычно остаётся в памяти некоторое время, и CPU получает к ней доступ по необходимости.

Улучшение скорости работы памяти может напрямую улучшить эффективность работы CPU в определённых ситуациях, хотя существует и точка насыщения, после которой CPU уже не в состоянии использовать память достаточно быстро. В повседневных задачах несколько дополнительных наносекунд не принесут вам особой пользы, но если вы занимаетесь обработкой больших массивов чисел, вам может помочь любое небольшое увеличение эффективности.

В играх скорость RAM может ощущаться гораздо сильнее. У каждого кадра есть только несколько миллисекунд на обработку кучи данных, поэтому если вы играете в игру, зависящую от скорости CPU (к примеру, CSGO), ускорение памяти может увеличить частоту кадров. Посмотрите на это измерение скорости от Linus Tech Tips:

как узнать jedec памяти. image loader. как узнать jedec памяти фото. как узнать jedec памяти-image loader. картинка как узнать jedec памяти. картинка image loader.

Средняя частота кадров вырастает на несколько процентов с увеличением скорости RAM, когда большую часть работы делает CPU. Сильнее всего скорость памяти проявляется на минимальном показателе частоты; когда загрузка новой области или нового объекта должна произойти за один кадр, он будет прорисовываться дольше обычного, если будет ожидать загрузки данных в память. Это называется «микрозаикание», или «фриз», и игра может производить впечатление заторможенности даже при хороших показателях средней частоты кадров.

Разгонять память не страшно

Разгонять память совсем не так страшно, как разгонять CPU или GPU. Разгоняя CPU, вы должны следить за его охлаждением, за тем, справится ли охлаждение с увеличением частоты. Работать CPU или GPU могут гораздо громче, чем обычно [видимо, имеется в виду работа кулеров / прим. перев.].

Память не особенно перегревается, поэтому разгонять её довольно безопасно. Даже на нестабильных частотах худшее, что может произойти – это выявление ошибки при тесте на стабильность. Однако если вы проводите эти эксперименты на ноутбуке, вам нужно убедиться, что вы сможете очистить CMOS (восстановив настройки в BIOS по умолчанию), если что-то пойдёт не так.

Скорость, тайминги и CAS-латентность

Скорость работы памяти обычно измеряют в мегагерцах, МГц [так в оригинале; конечно, в герцах измеряют частоту, а частота влияет на скорость работы / прим. перев.]. Это мера тактовой частоты (сколько раз в секунду можно получить доступ в память), совпадающая с мерой скорости CPU. Стоковая частота DDR4 (современного типа памяти) обычно составляет 2133 МГц или 2400 МГц. Однако на самом деле это немного маркетинг: DDR обозначает «удвоенную скорость данных», то есть что память читает и пишет дважды за один такт. Так что на самом деле её скорость составляет 1200 МГц, или 2400 мегатактов в секунду.

Но большая часть DDR4 RAM работает на 3000 МГц, 3400 МГц или выше – благодаря XMP (Extreme Memory Profile). XMP, по сути, позволяет памяти сообщить системе: «Да, я знаю, что DDR4 должна поддерживать частоту до 2666 МГц, но почему бы тебе не ускорить меня?» Это ускорение из коробки, предварительно настроенное, проверенное и готовое к запуску. Оно достигается на уровне железа, при помощи чипа на памяти под названием Serial Presence Detect (SPD), поэтому на одну планку может быть только один профиль XMP:

как узнать jedec памяти. image loader. как узнать jedec памяти фото. как узнать jedec памяти-image loader. картинка как узнать jedec памяти. картинка image loader.

У каждой планки памяти есть несколько встроенных вариантов тактовой частоты; стоковый вариант использует ту же самую систему SPD под названием JEDEC. Любая частота, превышающая скорость JEDEC, считается разгоном – то есть, XMP получается просто профилем JEDEC, разогнанным на заводе.

как узнать jedec памяти. image loader. как узнать jedec памяти фото. как узнать jedec памяти-image loader. картинка как узнать jedec памяти. картинка image loader.

Тайминги RAM и CAS-латентность – два разных способа измерять скорость памяти. Они измеряют задержку (то, насколько быстро RAM реагирует на запросы). CAS-латентность – это мера того, сколько тактов проходит между командой READ, отправленной в память, и получением процессором ответа. Её обычно обозначают «CL» и указывают после частоты памяти, например: 3200 Mhz CL16.

Она обычно связана со скоростью работы памяти – чем больше скорость, тем больше CAS-латентность. Но CAS-латентность – лишь один из множества разных таймингов и таймеров, с которыми работает RAM; все остальные обычно просто называются таймингами памяти. Чем меньше тайминги, тем быстрее будет ваша память. Если вам захочется подробнее узнать о каждом из таймингов, прочитайте руководство от Gamers Nexus.

XMP не будет делать всё за вас

Вы можете купить планку памяти от G.Skill, Crucial или Corsair, но эти компании не производят сами чипы DDR4, лежащие в основе RAM. Они покупают чипы у фабрик, изготавливающих полупроводниковые устройства, что означает, что вся память на рынке происходит из небольшого количества главных точек: Samsung, Micron и Hynix.

Кроме того, модные планки памяти, которые помечаются как 4000 МГц и выше, и у которых заявлена низкая CAS-латентность, на самом деле не отличаются от «медленной» памяти, стоящей в два раза дешевле. Оба варианта используют чипы памяти Samsung B-die DDR4, просто у одного из них золотистый радиатор, цветные огоньки и украшенный стразами верх (да, это реально можно купить).

Приходя с фабрики, чипы подвергаются проверкам при помощи процесса под названием «биннинг». И не вся память показывает наилучшие результаты. Некоторые чипы хорошо ведут себя на частотах 4000 МГц и выше с низкой CAS-латентностью, а некоторые не работают выше 3000 МГц. Это называется кремниевой лотереей, и именно она повышает цену на высокоскоростные планки.

Но заявленная скорость не обязательно ограничивает реальный потенциал вашей памяти. Скорость XMP – это просто рейтинг, гарантирующий, что планка памяти будет работать на указанной скорости 100% времени. Тут играют большую роль маркетинг и сегментация продуктов, чем ограничения RAM; никто не запрещает вашей памяти работать за пределами спецификаций, просто включить XMP легче, чем разгонять память самому.

Также XMP ограничен определённым набором таймингов. Согласно представителям Kingston, в памяти «настраиваются только ’основные’ тайминги (CL,RCD,RP,RAS)», и поскольку у SPD есть ограниченное место для хранения профилей XMP, всё остальное решает материнская плата, которая не всегда делает верный выбор. В моём случае материнка Asus в режиме «авто» установила очень странные значения некоторых таймингов. Моя планка памяти отказалась работать по умолчанию, пока я не исправил эти тайминги вручную.

Кроме того, биннинг на фабрике жёстко задаёт диапазон напряжения, в котором должна работать память. К примеру, фабрика протестирует память с напряжением в 1,35 В, не будет продолжать тест, если память не покажет максимальных результатов, и даст ей метку «3200 МГц», под которую попадает большинство планок. Но что, если запустить память с напряжением в 1,375 В? А 1,39 В? Эти цифры еще очень далеки от опасных для DDR4 напряжений, но даже небольшой прирост напряжения может помочь значительно увеличить частоту памяти.

Как разгонять память

Самое сложное в разгоне памяти – определить, какие частоты и тайминги нужно использовать, поскольку в BIOS есть более 30 различных настроек. К счастью, четыре из них считаются «основными» таймингами, и их можно подсчитать при помощи программы Ryzen DRAM Calculator. Она предназначена для систем на базе AMD, но будет работать и для пользователей Intel, поскольку в основном предназначена для расчётов таймингов памяти, а не CPU.

Скачайте программу, введите скорость памяти и тип (если он вам неизвестен, то быстрый поиск серийного номера в Google может выдать вам результаты). Нажмите кнопку R-XMP для загрузки спецификаций, и нажмите Calculate SAFE [безопасный вариант] или Calculate FAST [быстрый вариант], чтобы получить новые тайминги.

как узнать jedec памяти. image loader. как узнать jedec памяти фото. как узнать jedec памяти-image loader. картинка как узнать jedec памяти. картинка image loader.

Эти тайминги можно сравнить с прописанными спецификации при помощи кнопки Compare timings – тогда вы увидите, что на безопасных настройках всё немножечко подкручено, а основная CAS-латентность уменьшена на быстрых настройках. Будут ли у вас работать быстрые настройки – вопрос удачи, поскольку это зависит от конкретной планки, но у вас, вероятно, получится заставить память работать с ними в безопасном диапазоне напряжений.

Скриншот программы лучше отправить на другое устройство, поскольку вам понадобится редактировать настройки таймингов в BIOS компьютера. Затем, когда всё работает, вам нужно будет проверить стабильность разгона при помощи встроенного в калькулятор инструмента. Это процесс долгий, и вы можете прочитать наше руководство по разгону памяти, чтобы узнать все его подробности.

Источник

Разгон оперативной памяти DDR4 на AMD Ryzen и Intel Core

На github.com кто-то заморочился и сделал полноценный гайд по разгону оперативной памяти DDR4 на Intel и AMD Ryzen. А в качестве базовой информации в дополнении к нашему видео он будет полезен каждому.

Делимся переводом, приятного прочтения.

Содержание

Подготовка

Ожидания и ограничения

В этом разделе рассматриваются 3 компонента, влияющие на процесс разгона: микросхемы (чипы памяти), материнская плата и встроенный контроллер памяти (IMC).

Материнская плата

Замечено также, что дешёвые материнские платы могут не разогнаться, возможно по причине низкого качества печатной платы и недостаточного количества слоёв (?).

Микросхемы (чипы памяти)

Отчёты Thaiphoon Burner

По общему мнению, свои отбракованные низкосортные чипы Micron реализует под брендом SpecTek. Многие стали называть этот чип “Micron E-die” или даже просто “E-die”. Если в первом случае ещё куда ни шло, то во втором уже возникает путаница, поскольку подобная маркировка («буква-die») используется у микросхем Samsung, например – “4 Гб Samsung E-die”. Под “E-die” обычно подразумевается чип Samsung, поэтому стоит уточнять производителя, говоря о чипах Micron Rev. E как об “E-die”.

Масштабирование напряжения попросту означает, как чип реагирует на изменение напряжения. Во многих микросхемах tCL масштабируется с напряжением, что означает, что увеличение напряжения может позволить вам снизить tCL. В то время как tRCD и tRP на большинстве микросхем, как правило, не масштабируются с напряжением, а это означает, что независимо от того, какое напряжение вы подаёте, эти тайминги не меняются. Насколько я знаю, tCL, tRCD, tRP и, возможно, tRFC могут (либо не могут) видеть масштабирование напряжения. Аналогичным образом, если тайминг масштабируется с напряжением, это означает, что вы можете увеличить напряжение, чтобы соответствующий тайминг работал на более высокой частоте.

как узнать jedec памяти. dcf78777a629c9d780a234dca6acb426. как узнать jedec памяти фото. как узнать jedec памяти-dcf78777a629c9d780a234dca6acb426. картинка как узнать jedec памяти. картинка dcf78777a629c9d780a234dca6acb426.
Масштабирование напряжения CL11

На графике видно, что tCL у CJR 8 Гб масштабируется с напряжением почти ровно до 2533 МГц. У B-die мы видим идеально-ровное масштабирование tCL с напряжением.

Некоторые старые чипы Micron (до Rev. E) известны своим отрицательным масштабированием с напряжением. То есть при повышении напряжения (как правило, выше 1,35 В) они становятся нестабильными на тех же таймингах и частоте. Ниже приведена таблица некоторых популярных чипов, показывающая, какие тайминги в них масштабируются с напряжением, а какие нет:

Чип tCL tRCD tRP tRFC
8 Гб AFRДаНетНет?
8 Гб CJRДаНетНетДа
8 Гб Rev. EДаНетДа?
8 Гб B-dieДаДаДаДа

Тайминги, которые не масштабируются с напряжением, как правило необходимо увеличивать с частотой. Масштабирование напряжения tRFC у B-die.

как узнать jedec памяти. f7868c0e54bfc48a44bb965209dbfeff. как узнать jedec памяти фото. как узнать jedec памяти-f7868c0e54bfc48a44bb965209dbfeff. картинка как узнать jedec памяти. картинка f7868c0e54bfc48a44bb965209dbfeff.
Примечание: Шкала tRFC в тактах (тиках), не во времени (нс).

Ожидаемая максимальная частота

Ниже приведена таблица предполагаемых максимальных частот некоторых популярных чипов:

Чип Ожидаемая максимальная частота (МГц)
8 Гб AFR3600
8 Гб CJR4000*
8 Гб Rev. E4000+
8 Гб B-die4000+

* – результаты тестирования CJR у меня получились несколько противоречивыми. Я тестировал 3 одинаковых планки RipJaws V 3600 CL19 8 Гб. Одна из них работала на частоте 3600 МГц, другая – на 3800 МГц, а последняя смогла работать на 4000 МГц. Тестирование проводилось на CL16 с 1,45 В.

Не ждите, что одинаковые, но разнородные по качеству, чипы производителя одинаково хорошо разгонятся. Это особенно справедливо для B-die.

Суть биннинга заключается в разделении производителем полученной на выходе продукции «по сортам», качеству. Как правило, сортировка производится по демонстрируемой при тестировании частоте.

Чипы, показывающие одну частоту, производитель отделяет в одну «коробку», другую частоту – в другую «коробку». Отсюда и название процедуры – “binning” (bin – ящик, коробка).

B-die из коробки «2400 15-15-15» намного хуже чем из коробки «3200 14-14-14» или даже из «3000 14-14-14». Так что не ждите, что третьесортный B-die даст образцовые показатели масштабирования напряжения.

Чтобы выяснить, какой из одинаковых чипов обладает лучшими характеристиками на одном и том же напряжении, нужно найти немасштабируемый с напряжением тайминг.

Просто разделите частоту на этот тайминг, и чем выше значение, тем выше качество чипа. Например, Crucial Ballistix 3000 15-16-16 и 3200 16-18-18 оба на чипах Micron Rev. E. Если мы разделим частоту на масштабируемый с напряжением тайминг tCL, мы получим одинаковое значение (200). Значит ли это, что обе планки – одного сорта? Нет.

А вот tRCD не масштабируется с напряжением, значит его необходимо увеличивать по мере увеличения частоты. 3000/16 = 187,5 против 3200/18 = 177,78.

Как видите, 3000 15-16-16 более качественный чип, нежели 3200 16-18-18. Это означает, что чипы 3000 15-16-16 очевидно смогут работать и как 3200 16-18-18, а вот смогут ли 3200 16-18-18 работать как 3000 15-16-16 – не факт. В этом примере разница в частоте и таймингах невелика, так что разгон этих планок будет, скорее всего, очень похожим.

Максимальное рекомендованное повседневное напряжение

Спецификация JEDEC указывает (стр. 174), что абсолютный максимум составляет 1,50 В

Напряжения, превышающие приведенные в разделе «Абсолютные максимальные значения», могут привести к выходу устройства из строя. Это только номинальная нагрузка, и функциональная работа устройства при этих или любых других условиях выше тех, которые указаны в соответствующих разделах данной спецификации, не подразумевается. Воздействие абсолютных максимальных номинальных значений в течение длительного периода может повлиять на надежность.

Я бы советовал использовать 1,5 В только на B-die, поскольку известно, что он выдерживает высокое напряжение. Во всяком случае, у большинства популярных чипов (4/8 Гб AFR, 8 Гб CJR, 8 Гб Rev. E, 4/8 Гб MFR) максимальное рекомендуемое напряжение составляет 1,45 В. Сообщалось, что некоторые из менее известных чипов, таких как 8 Гб C-die, имеют отрицательное масштабирование или даже сгорают при напряжении выше 1,20 В. Впрочем, решать вам.

Ниже показано, как самые распространенные чипы ранжируются с точки зрения частоты и таймингов.

Встроенный контроллер памяти (IMC)

IMC от Intel достаточно устойчивый, поэтому при разгоне он не должен быть узким местом. Ну а чего ещё ждать от 14+++++ нм?

Для разгона RAM необходимо изменить два напряжения: System Agent (VCCSA) и IO (VCCIO). Не оставляйте их в режиме “Auto”, так как они могут подать опасные уровни напряжения на IMC, что может ухудшить его работу или даже спалить его. Большую часть времени можно держать VCCSA и VCCIO одинаковыми, но иногда перенапряжение может нанести ущерб стабильности, что видно из скриншота:

как узнать jedec памяти. ce799b9c36b5f5312bd2f868d58ce982. как узнать jedec памяти фото. как узнать jedec памяти-ce799b9c36b5f5312bd2f868d58ce982. картинка как узнать jedec памяти. картинка ce799b9c36b5f5312bd2f868d58ce982.
предоставлено: Silent_Scone.

Я не рекомендовал бы подниматься выше 1,25 В на обоих.

Ниже – предлагаемые мной значения VCCSA и VCCIO для двух одноранговых модулей DIMM:

Частота (МГц) VCCSA/VCCIO (В)
3000-36001,10 – 1,15
3600-40001,15 – 1,20
4000+1,20 – 1,25

Если модулей больше, и/или используются двуранговые модули, то может потребоваться более высокое напряжение VCCSA и VCCIO.

tRCD и tRP взаимосвязаны, то есть, если вы установите tRCD на 16, а tRP на 17, то оба будут работать с более высоким таймингом (17). Это ограничение объясняет, почему многие чипы работают не очень хорошо на Intel и почему для Intel лучше подходит B-die.

В UEFI Asrock и EVGA оба тайминга объединены в tRCDtRP. В UEFI ASUS tRP скрыт. В UEFI MSI и Gigabyte tRCD и tRP видны, но попытка установить для них разные значения приведет просто к установке более высокого значения для обоих.

Ожидаемый диапазон латентности памяти: 40-50 нс.

В Ryzen 1000 и 2000 IMC несколько привередлив к разгону и может не дать столь же высоких частот, как Intel. IMC Ryzen 3000 намного лучше и более-менее наравне с Intel.

SoC voltage – это напряжение для IMC, и, как и в случае с Intel, не рекомендуется оставлять его в “Auto” режиме. Тут достаточно 1,0 – 1,1 В, поднимать выше смысла нет.

На Ryzen 2000 (а возможно и на 1000 и 3000), вольтаж выше 1,15 В может отрицательно повлиять на разгон.

«На разных процессорах контроллер памяти ведет себя по-разному. Большинство процессоров будут работать на частоте 3466 МГц и выше при напряжении SoC 1,05 В, однако разница заключается в том, как разные процессоры реагируют на напряжение. Одни выглядят масштабируемыми с повышенным напряжением SoC, в то время как другие просто отказываются масштабироваться или вовсе демонстрируют отрицательное масштабирование. Все протестированные экземпляры демонстрировали отрицательное масштабирование при использовании SoC более 1,15 В. Во всех случаях максимальная частота памяти была достигнута при напряжении SoC = GDM вкл CR 1T > GDM откл CR 2T.

У процессоров Ryzen 3000 с одним CCD (процессоры серий ниже 3900X) пропускная способность записи вдвое меньше.

«В пропускной способности памяти мы видим нечто странное: скорость записи у AMD 3700X – у которого скорость записи благодаря соединению кристаллов CDD и IOD составляет 16 байт/такт – вдвое меньше, чем у 3900X. AMD заявляет, что это позволяет экономить электроэнергию, снизить нагрев процессора (TDP), к чему так стремится AMD. AMD говорит, что приложения редко делают чистые операции записи, но в одном из наших тестов на следующей странице мы увидим, как это ухудшило производительность 3700X.»

Ryzen Латентность (нс)
100065-75
200060-70
300065-75 (1:1 MCLK:FCLK)
75+ (2:1 MCLK:FCLK)

Достаточно высокий FCLK у Ryzen 3000 может компенсировать потери от десинхронизации MCLK и FCLK, при условии, что вы можете назначить MCLK для UCLK.

как узнать jedec памяти. 4c3b90404089bb057cec8e9c65096999. как узнать jedec памяти фото. как узнать jedec памяти-4c3b90404089bb057cec8e9c65096999. картинка как узнать jedec памяти. картинка 4c3b90404089bb057cec8e9c65096999.

Разгон

Дисклеймер: потенциал разгона сильно зависит от «кремниевой лотереи» (чип чипу рознь), поэтому могут быть некоторые отклонения от моих предложений.

Процесс разгона достаточно прост и выполняется в 3 шага:

Нахождение максимальной частот

На AMD начинать нужно с 1.10 В SoC. Напряжение SoC может называться по-разному в зависимости от производителя.

Обратите внимание, что это добавочное напряжение. Базовое напряжение изменяется автоматически при увеличении частоты DRAM. Напряжение 0,10 В на частоте 3000 МГц может привести к фактическому напряжению 1,10 В, а 0,10 В на частоте 3400 МГц приводит уже к фактическому напряжению 1,20 В. MSI: CPU NB/SOC.

2. Установите напряжение DRAM 1,4 В. Для планок на чипах Micron/SpecTek (за исключением Rev. E) следует установить 1,35 В.

3. Выставите основные тайминги следующим образом: 16-20-20-40 (tCL-tRCD-tRP-tRAS). Подробнее об этих таймингах читайте тут (на англ.)

4. Постепенно увеличивайте частоту DRAM до тех пор, пока Windows не откажет. Помните об ожидаемых максимальных частотах, упомянутых выше. На Intel, быстрый способ узнать, нестабильны ли вы, это следить за значениями RTL и IOL. Каждая группа RTL и IOL соответствует каналу. В каждой группе есть 2 значения, которые соответствуют каждому DIMM. Используйте Asrock Timing Configurator. Поскольку у меня обе планки стоят во вторых слотах каждого канала, мне нужно посмотреть на D1 в каждой группе RTL и IOL. Значения RTL у планок не должны разниться между собой более чем на 2, а значения IOL более чем на 1.

В моём случае, RTL разнятся ровно на 2 (53 и 55), а значения IOL не разнятся вовсе (7 у обоих планок). Все значения в пределах допустимых диапазонов, однако имейте в виду, что это ещё не значит, что всё действительно стабильно.

На Ryzen 3000 – убедитесь, что частота Infinity Fabric (FCLK) установлена равной половине вашей действующей частоты DRAM.

5. Запустите тест памяти на свой выбор.

6. При зависании/краше/BSOD, верните частоту DRAM на ступень ниже и повторите тестирование.

7. Сохраните ваш профиль разгона в UEFI.

8. Теперь вы можете либо попытаться перейти на ещё более высокую частоту, либо начать подтягивать тайминги. Ее забывайте об ожидаемых максимальных частотах, о которых мы говорили ранее. Если вы достигли пределов возможностей чипа и/или IMC, то самое время заняться оптимизацией таймингов.

Пробуем повысить частоты

2. Увеличьте основные тайминги до 18-22-22-42.
3. Повысьте вольтаж DRAM до 1,45 В.
4. Выполните шаги 4-7 из раздела «Нахождение максимальной частоты».
5. Выполните оптимизацию («подтягивание») таймингов.

Дополнительно: Тайминги и частота — разрушаем мифы

Оптимизация таймингов

Обязательно после каждого изменения запускайте тест памяти и бенчмарк-тест, чтобы убедиться в повышении производительности.

На процессорах Ryzen 3000 с одним CCD пропускная способность записи должна составлять 90-95% от половины теоретической максимальной пропускной способности. Можно достичь половины теоретической максимальной пропускной способности записи. См. здесь (англ.)

2. Я бы рекомендовал для начала подтянуть некоторые второстепенные тайминги в соответствии с таблицей ниже, поскольку они могут ускорить тестирование памяти.

Тайминги Надёжно
(Safe)
Оптимально
(Tight)
Предельно
(Extreme)
tRRDS
tRRDL
tFAW
6 6 244 6 164 4 16
tWR161210

3. Далее идут основные тайминги (tCL, tRCD, tRP).

4. Далее идёт tRFC. По умолчанию для чипов 8 Гб установлено значение 350 нс (обратите внимание на единицу измерения).

Ниже приведена таблица типичных значений tRFC в нс для наиболее распространенных чипов:

Чип tRFC (нс)
8 Гб AFR260-280
8 Гб CJR260-280
8 Гб Rev. E300-350
8 Гб B-die160-180

5. Оставшиеся второстепенные тайминги я предлагаю выставить следующим образом:

Тайминг Надёжно
(Safe)
Оптимально
(Tight)
Предельно
(Extreme)
tWTRS
tWTRL
4 124 8
tRTP12108
tCWLtCLtCL-1tCL-2

На Intel значения таймингов tWTRS/L следует сначала оставить в “Auto”, изменяя вместо них значения tWRRD_dg/sg соответственно. Уменьшение tWRRD_dg на 1 приведет к уменьшению tWTRS на 1. Аналогично с tWRRD_sg. Как только они достигнут минимума, вручную установите tWTRS/L.

6. Третьестепенные тайминги:

Пользователям AMD будет полезен этот текст (англ.)

Тайминг Надёжно
(Safe)
Оптимально
(Tight)
Предельно
(Extreme)
tRDRDSCL
tWRWRSCL
4 43 32 2

Пользователям Intel следует настраивать третьестепенные тайминги группой за раз, как видно из таблицы предлагаемых мной значений.

А тут тайминги на B-die, к сведению.

tREFI – это тоже тайминг, позволяющий повысит ьпроизводительность. В отличие от всех других таймингов, чем выше его значение – тем лучше.

Не стоит слишком увлекаться им, поскольку перепады температур окружающей среды (например, зима-лето) могут быть достаточными для возникновения нестабильности.

7. Также можно увеличить напряжение DRAM, чтобы ещё больше снизить тайминги. Вспомните про масштабирование напряжения чипов и максимальное рекомендованное повседневное напряжение, о чём мы говорили выше.

Дополнительно: Настройка таймингов DRAM на ASUS ROG MAXIMUS XI APEX

Дополнительные советы

Увеличение CLDO_VDDP похоже влияет положительно на частотах выше 3600 МГц, так как, по-видимому, улучшается гибкость и, следовательно, становится меньше ошибок.

Также будет интересно:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *