как узнать какое увеличение дает микроскоп
Увеличение и разрешающая способность светового микроскопа
Микроскоп – сложная оптическая система, позволяющая увеличивать изображение исследуемого объекта с десятки и сотни раз. У всех них есть принцип действия, а также характеристики, от которых зависит сфера работы каждого увеличительного прибора.
Увеличение микроскопа
Работа со световым микроскопом проводится для получения изображения под увеличением. Различают несколько его типов: объектив, окуляр, а также диапазон увеличения. Также у современного оборудования есть и цифровое.
Во сколько раз увеличивает световой микроскоп?
В обычном устройстве установлены две линзы, которые являются короткофокусными. Это окуляр и объектив.
Окуляр – это часть увеличительного прибора, устанавливаемая в окулярный узел, куда непосредственно смотрит исследователь. Его кратность в среднем составляет 10-20, величина этого параметра зависит от марки и вида прибора. Эти элементы могут быть съемные, а могут и быть установлены стационарно.
Как определить увеличение светового микроскопа?
Увеличение изображения, обеспечиваемое световым микроскопом, соответствуют произведению усиления окуляра и объектива. То есть изображение, которое мы видим при увеличении объекта, является совместной работой одного и второго элемента.
Объективы же – это элементы, которые также имеют в совеем составе увеличительные линзы. Данная конструкция закреплена на револьверном блоке, на котором может быть несколько объективов.
Например, если окуляр имеет значение кратности 10, а объектив – 20, то общее увеличение составляет 200 крат. Чтобы добиться необходимого размера, стоит поставить лишь подходящие оптические элементы. Однако, есть и ограничения в этом показателе.
Во сколько раз он увеличивает изображение максимально?
Даже самые современнее и мощные микроскопы не смогут увеличить объект свыше 2000 крат, так как изображение будет просто нечетким, и его визуализация будет невозможна.
Цифровое увеличение же зависит от возможности камеры, а также параметров экрана, на который будет выводиться изображение.
Поле зрения микроскопа
Поле зрения является параметром, характеризующий предельно максимальный диаметром области, который может быть визуализирован человеческим глазом при исследовании через окуляр. Зависит поле зрения от:
Данную величину можно рассчитать в миллиметрах, если исследовать миллиметровую шкалу линейки через микроскоп, при этом поле зрения не зависит от кратности увеличения окуляра.
Диаметр выходного зрачка микроскопа
Для того, чтобы определить такой показатель, как диаметр выходного зрачка, необходимо применение динаметра Рамсдена. Также для измерения такой величины может использоваться диоптрийная трубка со стеклянной шкалой. В фокальной плоскости анной лупы расположена сетка, цена деления которой составляет 0,1 миллиметр.
Разрешающая способность
Важными параметрами для увеличительного оборудования является и разрешающая способность светового микроскопа.
Смыслом определения разрешающая способность светового микроскопа, является возможность оптической системы четко различать две рядом расположенные точки. Это минимальное расстояние, расположенное между двумя точками, различающимися отдельно друг от друга.
Есть пределы разрешения светового микроскопа.
Максимальная разрешающая способность равна 0,25 мкм, это предел разрешающей способности светового микроскопа.
Если не достигнут предел разрешения светового микроскопа, то ее можно увеличить. Это возможно путем увеличения апертуры объектива или уменьшением длины волны света.
Полезное увеличение
Это показатель, который определяет увеличение, способное увидеть глазом исследователя, равное разрешающей способности прибора.
Это означает, что разрешающая способность человеческого глаза равна такому же показателю увелиивающего устройства. Для того, чтобы определить максимальную разрешающую способность объектива, необходимо подобрать от 500 до 1000 крат.
Минимальное полезное увеличение – это числовая апертура, помноженная на 500. Соответственно, максимальное увеличение – это числовая апертура, умноженная на 1000. Использование значений, менее минимальных, не даст возможности использовать разрешающую способность в полном объеме, а работа на больших параметрах не дать более четкого изображения изучаемого объекта.
Какие органоиды можно увидеть в световой микроскоп?
При помощи него можно довольно детально изучить структуру и строение клетки и ее органелл. В стандартный световой микроскоп можно увидеть рибосомы, комплекс Гольджи, который был открыт именно при помощи данного оборудования Камилло Гольджи, ядро, вакуоли, митохондрии, хлоропласт. Также прекрасно визуализируется клеточная стенка.
При выборе такой аппаратуры очень важно понимать ее сферу применения, так как для школьной лаборатории вполне достаточными параметрами обладает обычный световой микроскоп, а для научно-исследовательской, медицинской лаборатории, его мощности будет недостаточно для достижения всех поставленных целей. Среди такой техники можно выделить оптические, электронные, рентгеновские микроскопы, сканирующие оптические микроскопы ближнего поля и другие.
Увеличение оптического микроскопа
Когда вы знакомитесь с техническими характеристиками микроскопа, обычно видите в инструкции три графы со словом «увеличение». Одна относится к объективу, вторая – к окуляру, третья указывает на диапазон увеличения микроскопа. Существует и цифровое увеличение микроскопа. Давайте разберемся, почему увеличений так много и какова разница между ними.
Оптический микроскоп состоит из двух короткофокусных линз – объектива и окуляра. Картинка, которую мы видим в микроскопе, – результат их совместной работы. У каждой из этих линз есть свое увеличение. А общее увеличение оптического микроскопа вычисляется путем перемножения кратностей используемых окуляра и объектива.
Напомним, что окуляр – это аксессуар, который устанавливается в окулярный узел (сверху). Он бывает съемным или несъемным – это зависит от модели микроскопа. Увеличение окуляра микроскопа обычно указывается на корпусе самого окуляра в виде цифры, например 10х или 20х.
Объектив – аксессуар, который устанавливается в револьверное устройство микроскопа (снизу). Он во всем подобен окуляру: может быть съемным или несъемным, а значение увеличения указывается на корпусе в аналогичном формате. У объективов есть и свои уникальные конструктивные особенности, которые отличают их от окуляров, но они не связаны с увеличением. В рамках этой статьи мы не будем акцентировать на них внимание. Нам важно лишь то, что увеличение объектива оптического микроскопа – это величина, которая закреплена в технических характеристиках и указана на корпусе объектива.
А теперь разберемся с увеличением микроскопа. Предположим, что у нас есть оптический микроскоп с револьверным устройством на три объектива 10х, 40х и 100х и два съемных окуляра с кратностью 10х и 15х. Какое увеличение мы можем получить? Ответ в табличке ниже.
Объектив 10х | Объектив 40х | Объектив 100х | |
Окуляр 10х | 100x | 400x | 1000x |
Окуляр 15х | 150x | 600x | 1500x |
Путем последовательного перемножения значений кратности объективов и окуляров мы получаем шесть фиксированных увеличений микроскопа. Однако в технических характеристиках оптического прибора вы, вероятнее всего, увидите диапазон от 100х до 1500х. Не следует путать его с плавно изменяемой кратностью. В рассматриваемом примере значений, на которых можно вести наблюдения, всего шесть. Микроскопы с переменной кратностью тоже существуют, но встречаются реже. Чаще всего, это стереоскопические микроскопы, а о возможности плавного изменения увеличения в характеристиках пишут достаточно явно и четко.
Увеличение под микроскопом – есть ли ограничения?
Казалось бы, имея множество объективов и окуляров, можно достичь невероятного увеличения. Ставь на микроскоп самые мощные аксессуары и получишь самое большое увеличение в мире. Однако у любой оптической системы есть ограничения. Современные оптические микроскопы ограничены планкой в 2000 крат. При более высокой кратности теряется четкость изображения. Это связано с физическими особенностями оптических систем и наблюдениями в видимом свете. Поэтому даже самый продвинутый и дорогой оптический микроскоп профессионального уровня не позволит вам рассматривать образцы на увеличении свыше 2000 крат.
Цифровое увеличение микроскопа – что это такое?
Понятие цифрового увеличения с оптической системой микроскопа связано лишь частично. При его расчете уже учитываются и возможности камеры, и диагональ экрана, на который выводится изображение. Формулу цифрового увеличения для микроскопа можно знать, а можно и не знать – на самом деле, для моделей, которые используют этот тип увеличения, этот параметр всегда указывается в технических характеристиках. Не имеет никакого смысла его перепроверять. По сути дела цифровое увеличение описывает то, насколько крупно вы будете видеть изображение на экране. К сожалению, это не всегда означает, что все будет видно четко, так как максимальное разрешение картинки всегда ограничено возможностями оптической системы – преодолеть этот предел невозможно, даже если использовать супермощную цифровую камеру.
В нашем интернет-магазине вы можете подобрать оптический микроскоп с подходящим вам диапазоном увеличений. Все они представлены в этом разделе.
4glaza.ru
Январь 2018
Статья обновлена в апреле 2020 года.
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Как выбрать микроскоп
Содержание
Содержание
Микроскоп — важнейший прибор, без которого не обойтись при проведении научных исследований. Современная микроскопия богата на различные виды микроскопов, каждый из которых имеет свое предназначение, устройство и особенности работы. Данный гайд не только расскажет вам об основных элементах микроскопа, но и поможет определиться с выбором.
Окуляр
Окуляр представляет из себя систему, состоящую из нескольких линз (обычно 2–3), через которые исследователь будет рассматривать изучаемый объект. Линзы встраиваются в металлический корпус (тубус) и могут быть как фиксированного, так и фокусного увеличения. Самая нижняя линза предназначена для фокусировки на объекте, а верхняя — для наблюдения за ним. Все окуляры дают определенную кратность увеличения — 10x, 20x, 25x и т.д.
Объективы
Самая важная часть микроскопа, благодаря которой строится микроскопическое изображение изучаемого предмета с точной передачей мельчайших деталей, цвета, структуры. Другими словами, пользователь сможет рассмотреть лежащий перед ним объект в деталях, даже если он не виден человеческим глазом. Объектив имеет довольно сложное оптико-механическое устройство, включающее в себя несколько линз и других компонентов. Качество и количество линз зависит от тех задач, для которых создается прибор и может доходить до 14 штук. К таковым относятся сложные и дорогие планапохроматические объективы, применяемые чаще всего в биологии и медицине. Для изучения растений, веществ, тканей подойдут ахроматические объективы, в которых может быть всего 2–3 линзы.
Современные технологии позволяют создавать и выпускать множество типов объективов в зависимости от целевого назначения, устройства и принципа действия. Выделяют устройства с малыми (10х), средними (до 50х) и большими (более 50х) кратностями, а также сверхбольшие объективы кратностью свыше 100х. Микроскоп может быть оснащен одним объективом, но чаще всего имеет два или три с разной кратностью.
Общее увеличение микроскопа высчитывается путем сложения кратности окуляров и объективов. Например, если кратность окуляра составляет 10x, а объектива 90x, то общее увеличение будет иметь кратность 900x.
Объектив 4x | Объектив 15x | Объектив 30 X | |
Окуляр 10x | 40x | 150x | 300x |
Окуляр 20x | 80x | 300x | 600x |
Подсветка
Это не менее важная часть микроскопа, позволяющая подсветить объект изучения. Чаще всего состоит из двух частей: коллектора и конденсора. Конденсор имеет несколько встроенных линз и предназначен для увеличения количества света, исходящего от осветителя. Коллектор же располагается между объектом изучения и конденсором и помогает регулировать интенсивность освещения.
Источником освещения в подсветке выступают галогенные лампы, светодиоды, зеркала или лампы накаливания. В конструкции микроскопа подсветка может иметь верхнее, нижнее расположение или же быть комбинированной (верхняя и нижняя). Верхняя располагается над предметным столиком и нужна для того, чтобы рассмотреть непрозрачные или полупрозрачные предметы. Нижняя же находится под столиком и нужна для изучения прозрачных объектов, на которые направляется пучок света. Подсветка нуждается в питании от сети, через USB или батареек.
Конденсор, верхняя подсветка, комбинированная подсветка (верхняя и нижняя):
Тип визуальной насадки
Есть монокулярные, бинокулярные и даже тринокулярные насадки. Монокулярная имеет один окуляр, бинокулярная два. Два окуляра будут более предпочтительнее чем один, однако они требуют некоторого навыка. В тринокулярной насадке, помимо двух окуляров, будет дополнительная трубка, на которую можно установить камеру и передавать изображение на монитор компьютера.
Минимальное и максимальное оптическое увеличение
Минимальное оптическое увеличение высчитывается путем сложения кратности окуляров и объективов. Например, если минимальная кратность и у окуляра, и у объектива составляет 10х, то минимальное оптическое увеличение будет составлять 100х. Это дает не совсем четкую картинку, но с широким полем зрения.
Максимальное оптическое увеличение высчитывается таким же образом, как и минимальное. Пример: окуляр кратностью 10х и объектив кратностью 90х, вместе дадут увеличение в 900х. Это позволяет максимально детально рассмотреть предмет изучения, однако если выбрано увеличение намного выше допустимого, для того или иного предмета, то это не выявит каких-либо дополнительных деталей, но может ухудшиться качество и четкость изображения. Соответственно поле зрения также будет намного уже. Например, зерна обычного песка можно рассмотреть при увеличении в 400х, поэтому более высокие значения будут избыточны. При высоких значениях увеличения (800х и более) можно изучать детальную структуру предметов, пыльцу, минералы и многое другое.
Цифровая камера и максимальное цифровое увеличение
Некоторые модели световых микроскопов оснащаются цифровой камерой для фото и видеосъемки. Камера может встраиваться в корпус микроскопа наравне с объективами, но чаще всего это прибор с тринокулярной насадкой, в котором третий окуляр предназначается для специального видеоокуляра. Стоит отметить, что видеоокуляр можно установить и на прибор с монокулярной насадкой. Есть и специальные цифровые микроскопы, в которых объектив как таковой отсутствует и его заменяет цифровая камера. Изображение передается сразу же на компьютер, причем разрешение камеры измеряется в мегапикселях и может быть от 0,3 до 5 Мп. Максимальное цифровое увеличение в данном случае будет относиться именно к возможностям камеры, хотя не стоит отметать и другие факторы: насколько качественен монитор для просмотра и т.д. Увеличение в цифровых моделях может составлять 300х, 1600х и т.д.
Фокусировка
Как правило, фокусировка в микроскопах бывает грубой и точной.
Револьверная головка
Устройство револьверного типа в которое встраиваются объективы. Там может находиться всего лишь один объектив, но чаще головки имеют два, три и четыре объектива. Пользователь при необходимости просто проворачивает головку, выбирая нужный ему объектив.
Межзрачковое расстояние
Расстояние между зрачками измеряемое в миллиметрах. Данная характеристика относится к микроскопам с бинокулярной насадкой. Чтобы создать стереокартинку или единое поле, в котором оба глаза будут видеть предмет изучения, нужно провести несложные настройки. Для этого первоначально необходимо настроить резкость окуляров, а затем свести изображение воедино, поворачивая тубусы, в которые встроены окуляры. Если все сделано правильно, то оба глаза должны видеть единое поле, без затемнения центра или краев изображения.
Советы по выбору
Любитель или профессионал
Для любительских, детских изысканий подойдет недорогое устройство с окулярами 10х или 20х и объективами до 40х. Оптимальными будут приборы с увеличением до 200х или 400х.
Для серьезных исследований нужен уже более мощный прибор с максимальным увеличением в несколько сотен (более 400х) или более 1000 крат. Также стоит обратить внимание на цифровые микроскопы, не требующие особых настроек, навыков работы. В них изображение передается сразу же на монитор.
Визуальная насадка — какая лучше?
Даже если вы приобретаете микроскоп для несложных опытов, любительских исследований или для ребенка, то лучше всего подойдет бинокулярная насадка, так как именно она дает хорошее стереоизображение. Если есть необходимость в получении фото или видео, то лучше взять прибор с тринокулярной насадкой.
Объективы — чем больше, тем лучше
Даже если вы не собираетесь становиться микробиологом, желательно приобрести прибор с двумя или тремя объективами, кратностью 4x, 10x и 40x. Самым оптимальным будет вариант прибора с наличием объектива в 40х. Фокусировку на объект следует проводить, начиная с малого по кратности объектива (например, с 4х).
Объективы — чем выше кратность, тем профессиональнее
Если предстоит выбрать микроскоп для профессиональных исследований, то нужно обращать внимание на приборы, дающие максимальное увеличение не менее 400х. Это нижняя необходимая для эффективной работы граница. Верхней же границы не установлено и можно выбирать прибор с увеличением в несколько тысяч крат, например, в 2000х. Для серьезных исследований обязательно наличие в револьверной головке 100-кратного объектива.
Подсветка — лучше комбинированная
Как уже известно, она может быть нижняя, верхняя и комбинированная. Лучше всего подойдет прибор именно с комбинированной подсветкой, так как с ее помощью возможно изучать как прозрачные объекты, так и непрозрачные (монеты, насекомых, минералы и т.п.). Также желательно приобрести прибор с галогеновой или со светодиодной подсветкой.
Фокусировка — грубо, но точно
Не забываем, что фокусировка бывает грубой и точной. Для любительских исследований вполне подойдет прибор только с грубой фокусировкой, хотя комбинированный вариант (и с грубой, и с точной) будет более предпочтительней. А вот для профессиональных исследований, тонкая фокусировка просто обязательна.
Штатив
Какие-либо особые требования к штативу не предъявляются, но стоит присмотреться к прибору, штатив которого выполнен из металла или же имеет металлические вставки.
Выводы
Современная промышленность предлагает массу вариантов для плодотворного изучения окружающего мира. Для новичков и школьников, для небольших любительских исследований, отлично подойдут микроскопы с максимальным увеличением до 400–640х. Если же планируются серьезные научные изыскания, то будет необходим прибор от 640х и выше, причем верхней границы, в принципе, не существует. Также стоит обращать внимание на комбинированную подсветку, бинокулярную насадку и возможность записи фото и видео.
Что можно увидеть в оптический и цифровой микроскопы и как ими пользоваться
Содержание
Содержание
При проведении научных и любительских исследований невозможно обойтись без микроскопа. Он не только приблизит исследователя к новым открытиям, но и поможет рассмотреть удивительный мир, открывающийся в окружающих нас вещах. Что именно можно увидеть в микроскоп, как им пользоваться и какой лучше подойдет — в этом материале.
Что такое микроскоп
Прообраз первого микроскопа появился еще в 16 веке и с тех пор устройство прошло длинный путь своего становления и развития. Микроскопом называют прибор, предназначенный для увеличения мелких или практически не видимых человеческим глазом предметов и объектов. Процессы такого изучения называют микроскопией, которая подразделяется на категории в зависимости от вида микроскопа.
Где же можно использовать данное устройство:
На вопрос «Кто изобрел микроскоп?» до сих пор нет однозначного ответа, так как многие ученые и любители работали над похожими системами. Тем не менее часто выделяют Иоанна Липперсгея, Захария Янсена и, конечно же, Галилео Галилея.
Многие помнят или представляют микроскоп, как прибор с одним или двумя окулярами, которые при увеличении позволяют исследователю рассмотреть предмет в многократном увеличении. Это и есть классический прямой оптический микроскоп. Современная микроскопия использует множество типов приборов: электронные, инвертированные, лазерные, люминесцентные, стереоскопические и другие.
Так, например, люминесцентные подсвечивают изучаемый объект и позволяют изучать его как бы освещенным изнутри собственным светом за счет специальной лампы и системы светофильтров. А электронные, в отличие от оптических, используют вместо света пучки электронов. В общем для каждой отрасли науки и даже изучаемого объекта нужен определенный прибор. Мы же рассмотрим наиболее популярные и доступные рядовым пользователям модели.
Основные элементы микроскопа
И так, микроскопы отличаются друг от друга видами и целевым назначением. Соответственно, и устроены они по-разному. Существует две системы — оптическая и механическая. Первая включает в себя все элементы без которых микроскоп не будет микроскопом.
Окуляр
Глядя в глазной окуляр исследователь и будет изучать какой-либо объект. Окуляр дает некоторое фиксированное увеличение (10x, 20x, 25x и т.д.). Современные окуляры имеют несколько линз, встроенных в металлический корпус (тубус). В зависимости от количества окуляров микроскопы подразделяются на монокулярные, бинокулярные и тринокулярные. Бинокулярные создают стереокартинку, более удобны чем молекулярные, но в отличие от последних требуют привыкания и дополнительных настроек при использовании двух окуляров. Если используется цифровой микроскоп, то в нем окуляр как таковой отсутствует — его роль выполняет камера.
Объектив
Важнейшая и самая сложная часть прибора, позволяющая в купе с окуляром детально рассмотреть любой объект исследования. Чаще всего состоит из металлической трубки с несколькими линзами, дающими кратное увеличение. Объектив смотрит непосредственно на предмет изучения, точнее сказать — на предметный столик. Полученное с помощью объектива изображение мы и видим в окуляр.
В любительских и профессиональных устройствах может быть несколько объективов (не менее 3-х) встроенных в устройство или насадку револьверного типа. Пользователь просто проворачивает насадку и смотрит в нужный объектив. Чем больше объективов разной кратности, тем лучше для пользователя. Кратность указывается на корпусе объектива.
У каждого окуляра и объектива есть свое увеличение, которое вместе образует общее увеличение микроскопа. Чтобы высчитать его? нужно перемножить кратность увеличения окуляров и объективов. Так, например, если кратность окуляра составляет 10х, а объектива 40х, то общее увеличение будет составлять 400х. В некоторых приборах общее увеличение может составлять до 1200х. При таком увеличении можно рассматривать клетки растений и животных, строение насекомых, пыльцу растений и т.п.
Подсветка
При изучении объект, когда он расположен на подставке, необходимо подсвечивать снизу пучком света. Свет можно направить как простым зеркалом, так и более сложными устройствами, например, электроосветителями. Также подсветка может быть комбинированная для просмотра прозрачных и непрозрачных объектов. На нижних фотографиях указана комбинированная подсветка. На правом фото также виден небольшой винт регулировки подсветки.
Микроскопы используют при реставрациях образцов мировой культуры. Например, для восстановления терракотовой армии или полотен эпохи Возрождения.
А сейчас перейдем к механической системе микроскопа. Вот некоторые элементы, которые она включает в себя.
Подставка
Это основание микроскопа, отвечающее за его устойчивость. Если сюда прибавить еще и штатив, то вместе получится корпус микроскопа. На него крепятся все остальные части прибора. Чтобы фокусировать изображение, на корпусе обычно располагаются два винта, один из которых приближает или отдаляет объектив от объекта (грубая регулировка), а второй помогает произвести более тонкую фокусировку на предмете (тонкая регулировка).
Предметный столик
На него помещаются объекты для изучения. В центре столика есть небольшое круглое отверстие, через которое на предмет попадает пучок света. Снабжен зажимами. В некоторых моделях цифровых микроскопов, предметный столик отсутствует.
Дополнительные аксессуары
Помимо самого микроскопа потребуются и дополнительные инструменты, без которых работа будет невозможна или затруднительна. Главным здесь будет предметное стекло, на которое помещается предмет, подлежащий изучению. При необходимости он сверху накрывается покрывным стеклом. Также пригодятся скальпель, пипетка и пинцет. Пипетка будет полезна при наборе жидких образцов, пинцетом можно передвигать объекты изучения, а скальпелем отрезать небольшие частицы от предметов. Собирать и хранить какие-либо образцы желательно в специальных контейнерах, хотя можно обойтись и подручными средствами.
Принцип работы микроскопа
Кратко коснемся принца работы устройства и разберем его на примере оптического микроскопа. Для того, чтобы что-то рассмотреть в окуляры, нужна подсветка. В зависимости от вида прибора это может быть естественное или искусственное освещение, направление которого регулируется зеркалом. Кстати говоря, сейчас это уже устаревшая система. Все чаще используют свет, исходящий от встроенной в основание микроскопа лампы, которая питается от сети или батарейки. Подсветка лампы чаще всего регулируемая.
Поток света (естественного или от лампы) проходит через отверстие в предметном столике, пронизывает объект изучения насквозь и попадает на линзы объектива, а затем — окуляра, которые обеспечивают увеличение. Ну а далее в дело вступает опытный взгляд исследователя.
Как пользоваться оптическим микроскопом
Перед началом работы нужно подготовить рабочее место, очистить его от мусора и пыли. Желательно вымыть руки или использовать перчатки. Если есть пробелы в знаниях или сомнения, относящиеся к работе микроскопа, то обязательно нужно изучить инструкцию. В целом же работать с микроскопом не так сложно, как кажется на первый взгляд.
Изучаемый предмет помещается на предметный столик. Так можно изучать продукты питания, бумагу, насекомых, волосы и другие мелкие предметы. Несколько сложнее с жидкостью или в том случае, когда исследуемые объекты требуют предварительной подготовки. Например, тонкого среза или смеси в виде кашицы. На них нужно капнуть воды или специальной жидкости и сверху осторожно накрыть покровным стеклом. Также можно использовать готовые наборы микропрепаратов, в которые входит предметное стекло с уже нанесенным на него объектом исследования. Это может быть кошачья шерсть, голова мухи, срез дождевого червя, костная ткань, минералы и многое другое.
Далее нужно осуществить фокусировку. Винтом грубой регулировки следует приближать и отдалять предмет, пока не получится четкое изображение. После этого винтом (или колесиком) тонкой настройки добиваемся максимальной резкости картинки. Начинать фокусировать нужно с минимального значения, постепенно переключаясь на более высокое увеличение. Например, если прибор имеет два объектива значением 2х и 4х, то начинать фокусировку нужно с 2х, а затем, вращая револьверную насадку увеличивать значение.
Начав сразу же с максимального увеличения, пользователь рискует увидеть лишь малую часть объекта или же вообще ничего не увидеть. Если же прибор имеет только один объектив, то увеличение у него будет постоянным. Важно помнить, что винтом грубой фокусировки объектив приближается к предметному столику, поэтому есть большой риск сломать стекло, повредить сам объектив и даже получить порезы. Искать фокус следует не к стеклу, а от стекла. Стоит заметить, что на некоторых объективах, в первую очередь стократных, устанавливается специальная оправа, которая пружинит при встрече со стеклом. Однако, ее цель состоит не в защите линзы, а в создании более плотного контакта стекла с объективом.
Как пользоваться цифровым микроскопом
Цифровой микроскоп работает по-другому. У него отсутствует окуляр и сам он напоминает цифровую камеру, только с более многократным увеличением. Такие микроскопы можно встретить в нескольких вариантах, с различными характеристиками, назначением и соответственно ценами. Возьмем для примера стандартный настольный микроскоп, который больше относится к любительским. Подключив его через USB порт к компьютеру, пользователь также устанавливает специальное программное обеспечение, с помощью которого возможно рассмотреть изображение. После подключения, под объектив прибора размешается объект изучения, после чего исследователь сможет рассмотреть полученное изображение на мониторе компьютера. Считывается изображение посредством цифровой камеры.
Исследования через микроскоп — это не только полезно, но еще и увлекательно. Ученые используют профессиональные, мощные и дорогие устройства. Любителям же подойдут цифровые или бинокулярные оптические модели, с помощью которых можно изучать окружающий мир: насекомых, растения, продукты питания, камни, веточки деревьев и многое другое.