как узнать код буквы в питоне
Символы в языке Python
Тип char – это тип данных, служащий для хранения одиночных символов в различных кодировках.
Он широко используется в более низкоуровневых языках программирования, таких как C. Даже строки там являются массивами, состоящими из элементов типа char.
В Python нет отдельного типа для символов. Даже если присвоить переменной значение ‘а’, она будет иметь строковый тип.
Альтернатива char в Python 3
Разработчики языка решили, что нет необходимости выделять под отдельные символы целый тип. На то есть несколько причин:
Поэтому как бы программист ни пытался, переменные будут иметь строковый тип:
Любой символ в Python является единичной строкой, что позволяет использовать для работы с ним те же функции, что и для строк.
Строка — это неизменяемая последовательность, а так как символ тоже строка, то при попытке изменить его, возбудится исключение:
Функции
Несмотря на объединение двух типов, язык программирования Python 3 имеет функции для работы именно с символами.
Функция возвращает числовое представление символа, переданного в качестве аргумента. То есть с её помощью в Python можно определить код символа (аналогичная функция есть и в C для приведения char к int), например:
Функция работает, только если в качестве аргумента передан один символ, при попытке передать строку возбудится исключение TypeError. С её помощью можно получить числовое представление любого символа кодировки Юникод.
Функция возвращает символ, соответствующий его числовому представлению, которое передается в качестве аргумента:
Экранирование
Экранированные символы — это специальные символы после обратной косой черты «\», выполняющие определенные действия и преобразования.
Экранированная последовательность | Функция |
\n | Переход на новую строку |
\t | Табуляция |
\r | Возврат каретки в начало строки |
\x | Числа в шестнадцатеричном представлении |
\o | Числа в восьмеричном представлении |
\0 | Нулевой символ |
\’ | Апостроф |
\» | Двойная кавычка |
\\ | Обратный слэш |
Экранированные символы также называются escape-последовательностями, с их помощью можно, например, форматировать строки —
Подавление экранирования
Иногда программисту нужно, чтобы обратный слеш не превращал элементы в escape-последовательности, например, при работе с путями к файлам. Для этого необходимо использовать сразу две косых черты: «C:\\Users\\Public».
Когда программист хочет использовать обратный слеш для вывода, но не подавляет экранирование, в некоторых случаях даже возбуждается исключение. В следующем примере есть синтаксическая ошибка из-за того, что с «\U» начинается записть 32-битного символа Юникода (с «\u» — 16-битного). После него должна быть последовательность из 8 цифр, поэтому возникла ошибка:
Чтобы избежать этого, используют приём подавления экранирования:
Подавить экранирование можно с помощью «r», который ставится перед началом строки (до кавычек). На самом деле интерпретатор, видя перед строкой «r», автоматически дублирует каждый символ обратного слеша. Если использовать это в интерактивном режиме, мы увидим:
Решить эту проблему можно несколькими способами:
2.5. Символы и строки¶
До сих пор наши программы работали только с числами. Но многим программам надо работать с текстовыми данными. Для этого есть два основных объекта — символы и строки.
2.5.1. Символьный тип данных¶
В питоне, чтобы сохранить символ в переменной, надо просто написать
Вводить символы можно обычной командой input() :
(именно прямо так), выводить — обычным print :
(На самом деле, в питоне нет отдельного «типа» для символов, символ в питоне — это просто строка длины 1, про строки см. ниже. Но часто удобно думать про символы отдельно от строк.)
2.5.2. Коды символов¶
Есть общепринятая договоренность, которая каждому числу от 0 до 255 ставит в соответствие некоторый символ. Точнее, таких договоренностей есть несколько, они называется кодировки, но для латинских букв, цифр и частоупотребимых символов типа того же доллара, запятой или плюса, во всех кодировках соответствующие числа одинаковы. Для русских букв это не так: в разных кодировках им соответствуют разные числа, но это отдельная тема.
Эта общепринятая сейчас кодировка для латинских букв, цифр и частоупотребимых символов называется ASCII, иногда говорят таблица ASCII. Основная часть этой таблицы выглядит так:
32 | 48 | 0 | 64 | @ | 80 | P | 96 | ` | 112 | p | |
33 | ! | 49 | 1 | 65 | A | 81 | Q | 97 | a | 113 | q |
34 | « | 50 | 2 | 66 | B | 82 | R | 98 | b | 114 | r |
35 | # | 51 | 3 | 67 | C | 83 | S | 99 | c | 115 | s |
36 | $ | 52 | 4 | 68 | D | 84 | T | 100 | d | 116 | t |
37 | % | 53 | 5 | 69 | E | 85 | U | 101 | e | 117 | u |
38 | & | 54 | 6 | 70 | F | 86 | V | 102 | f | 118 | v |
39 | ‘ | 55 | 7 | 71 | G | 87 | W | 103 | g | 119 | w |
40 | ( | 56 | 8 | 72 | H | 88 | X | 104 | h | 120 | x |
41 | ) | 57 | 9 | 73 | I | 89 | Y | 105 | i | 121 | y |
42 | * | 58 | : | 74 | J | 90 | Z | 106 | j | 122 | z |
43 | + | 59 | ; | 75 | K | 91 | [ | 107 | k | 123 | < |
44 | , | 60 | 76 | L | 92 | \ | 108 | l | 124 | | | |
45 | — | 61 | = | 77 | M | 93 | ] | 109 | m | 125 | > |
46 | . | 62 | > | 78 | N | 94 | ^ | 110 | n | 126 | |
47 | / | 63 | ? | 79 | O | 95 | _ | 111 | o | 127 | — |
Здесь символ номер 32 — это пробел.
Например, символ доллар имеет номер (говорят код) 36, а символ N — 78.
Обратите внимание, что все цифры идут подряд, все заглавные буквы идут подряд, и все маленькие буквы идут подряд. Это нам будет очень полезно. (Для русских букв это выполняется не всегда.)
Узнать код символа в питоне можно операцией ord, а узнать символ по коду можно операцией chr. Например:
Нам поможет то, что все цифры идут подряд. Поэтому достаточно из кода цифры вычесть код нуля:
2.5.3. Сравнения символов¶
Символы можно сравнивать операторами =, >, =, len(s) :
В-третьих, строки можно складывать. Сложить две строки — значит приписать к одной строке другую:
Прибавлять можно и символы:
Наконец, строковые константы — это уже привычные вам последовательности символов в кавычках:
На самом деле, в питоне можно использовать как апострофы (символы ‘ ), так и кавычки (символы » )
Аналогично для записи символа «апостроф»/»кавычка» в переменную типа char:
Поскольку символ \ имеет такой особый смысл, то чтобы записать в строку прямо этот символ, его надо написать два раза:
Еще частный случай строки — пустая строка, т.е. строка длины ноль:
Ну и наконец, строка — это все-таки массив символов. Можно использовать все известные вам операции над массивами (писать s[i], чтобы получить доступ к i-му символу строки, и т.д.). Например, так можно проверить, есть ли в строке пробелы:
2.5.6. int и т.п.¶
Есть еще три полезных команды:
Они переводят числа в строки и обратно, с int вы уже сталкивались.
2.5.7. Другие операции¶
Вы знаете ряд хитрых команд работы с массивами, и иногда будет возникать желание их использовать при работе со строками. Лучше их не используйте, пока вы точно не будете понимать не только что, но и насколько быстро они работают. В большинстве случаев можно обойтись без них (и так даже будет проще!), плюс вы точно не знаете, как долго они работают.
Например, пусть вам надо из строки удалить все пробелы. Можно писать примерно так (считаем, что у вас уже есть исходная строка s ):
Но это работает долго (поверьте мне 🙂 ) и требует от вас помнить все эти команды (а на питоне — еще и осознавать код). Проще так:
Кодировки и шифрование¶
Кодировки¶
Наиболее распространённые кодировки
Обозначение в python
Латинские буквы, цифры и простые символы
Кириллическая кодировка (русский и другие языки)
Кодировка для русского языка
Unicode — стандарт кодирования символов, включающий в себя знаки почти всех письменных языков мира. В настоящее время стандарт является преобладающим в Интернете.
стандарт включает более 138 тысяч символов;
каждый символ имеет определённое название и код (номер);
Примеры кодов, имен и соответствующих символов:
Конвертация данных между байтам и строками¶
Данные по сети передаются, как правило, в байтах. Например, метод socket.recv() получает данные в байтах. Чтобы преобразовывать данные из байт в строки и наоборот используются специальные методы:
В коде будет выглядеть так:
При работе с кодировкой важно помнить:
Если вы кодируете строку в байты кодировкой UTF-8, то и перекодировать её из байт нужно этой же кодировкой. Некоторые кодировки совместимы, но в большинстве случаев, нарушения этого правила ведёт к потере данных.
В своём коде всегда используйте кодировки Unicode, оптимально UTF-8, она используется по умолчанию в большинстве методов и функций, так что это снижает риск ошибок.
Шифрование¶
Шифр Цезаря
Шифр Цезаря — это вид шифра подстановки, в котором каждый символ в открытом тексте заменяется символом, находящимся на некотором постоянном числе позиций левее или правее него в алфавите. Например, в шифре со сдвигом вправо на 3, A была бы заменена на D, B станет E, и так далее.
Повторить шифр можно в занятии
Формула для кодирования символа:
Шифр пар
Алфавит случайным образом записывают в 2 строки, и шифрование текста происходит заменой буквы на соседнюю ей по вертикали. Например:
Шифр Виженера
На алфавите длиной N вводят операцию добавления (циклического сдвига) букв. Пронумеровав буквы, добавляем их по модулю N (для англ. алфавита N=26).
Выбираем слово-ключ (пускай pass) и подписываем его под сообщением сколько нужно раз:
Задания¶
Доработайте прототип чата из прошлого урока таким образом, чтобы он корректно работал с русским языком (используйте методы кодирования и декодирования байтовых строк).
2. Напишите функцию для шифрования файла шифром Цезаря. Расшифруйте:
3. Напишите функцию для шифрования файла шифром пар. Расшифруйте:
4.* Напишите функцию для шифрования файла шифром Виженера. Расшифруйте. 5. Добавьте в чат (с кодировкой) возможность выполнять шифрование и дешифрование сообщения одним из шифров по выбору пользователя. 6. Доработайте чат таким образом, чтобы пользователь отправлял серверу имя зашифрованного файла и шифр, а сервер дешифровал его и отправлял содержимое файла обратно пользователю.
Unicode В Python – Модуль unicodedata Объяснен
Эй, ребята! В этом уроке мы узнаем о Юникоде в Python и свойствах символов Юникода. Итак, давайте начнем.
Эй, ребята! В этом уроке мы узнаем о Юникоде в Python и свойствах символов Юникода. Итак, давайте начнем.
Что такое Юникод?
Юникод связывает каждый символ и символ с уникальным числом, называемым кодовыми точками. Он поддерживает все мировые системы письма и гарантирует, что данные могут быть извлечены или объединены с использованием любой комбинации языков.
Кодовая точка-это целочисленное значение в диапазоне от 0 до 0x10FFFF в шестнадцатеричном кодировании.
Чтобы начать использовать символы Юникода в Python, нам нужно понять, как модуль string интерпретирует символы.
Как интерпретировать ASCII и Unicode в Python?
Аналогично, odr ()-это встроенная функция, которая принимает односимвольную строку Юникода в качестве входных данных и возвращает значение кодовой точки.
Что означает кодировка символов в Python?
Строка-это последовательность кодовых точек Юникода. Эти кодовые точки преобразуются в последовательность байтов для эффективного хранения. Этот процесс называется кодированием символов.
Существует множество кодировок,таких как UTF-8,UTF-16, ASCII и т. Д.
По умолчанию Python использует кодировку UTF-8.
Что такое кодировка UTF-8?
Он заменил ASCII (американский стандартный код Для обмена информацией), поскольку он содержит больше символов и может использоваться для разных языков по всему миру, в отличие от ASCII, который ограничен только латинскими языками.
Первые 128 кодовых точек в наборе символов UTF-8 также являются допустимыми символами ASCII. Символ в UTF-8 может иметь длину от 1 до 4 байт.
Кодирование символов в UTF-8 с помощью функции Python encode()
Метод encode() преобразует любой символ из одной кодировки в другую. Синтаксис функции кодирования выглядит следующим образом –
Параметры :
Как использовать Unicode в Python с функцией encode ()?
Теперь давайте перейдем к пониманию того, как функция кодирования строк может позволить нам создавать строки unicode в Python.
Исчерпывающее руководство по Юникоду и кодировке символов в Python
Вводная часть статьи даст общее понимание работы с Юникодом, не привязанное к какому-то определённому языку, однако практические примеры будут приведены именно на Python, а их описание будет довольно лаконичным.
Изучив эту статью, вы:
Система нумерации и кодировка символов настолько тесно связаны, что их придётся раскрыть в одном руководстве, в противном случае материал будет неполным.
Прим. Статья ориентирована на Python 3, а все примеры кода созданы с помощью оболочки CPython 3.7.2. Большая часть более ранних версий Python 3 также будут корректно обрабатывать код. Если вы всё ещё используете Python 2 и различия в обработке текста и бинарных данных между 2 и 3 версиями языка вас отпугивают, это руководство может помочь вам преодолеть барьер.
Что такое кодировка символов?
Существуют десятки, если не сотни, кодировок символов. Понять эту концепцию легче всего, разобрав одну из самых простых, ASCII.
Она охватывает следующее:
Приведём формальное определение кодировки символов.
На самом высоком уровне — это способ перевода символов (таких как буквы, знаки пунктуации, служебные знаки, пробелы и контрольные символы) в целые числа и затем непосредственно в биты. Каждый символ может быть закодирован уникальным двоичным кодом. Если вы плохо знакомы с концепцией битов, не волнуйтесь, мы вскоре о ней поговорим.
Группы символов выделяют в отдельные категории. Каждому символу соответствует кодовая точка, которую можно рассматривать просто как целое число. В таблице ASCII символы сегментированы следующим образом:
Диапазон кодовых точек | Класс |
---|---|
от 0 до 31 | Контрольные и неотображаемые символы |
от 32 до 64 | Знаки пунктуации, символы, числа и пробел |
от 65 до 90 | Буквы английского алфавита в верхнем регистре |
от 91 до 96 | Дополнительные графемы, такие как [ и \ |
от 97 до 122 | Буквы английского алфавита в нижнем регистре |
от 123 до 126 | Дополнительные графемы, такие как < и | |
127 | Контрольный неотображаемый символ ( DEL ) |
Всего кодировка ASCII содержит 128 символов. В таблице ниже вы видите исчерпывающий набор знаков, которые позволяет отобразить эта кодировка. Если вы не видите какого-то символа, значит вы просто не сможете его вывести с помощью ASCII.
Кодовая точка | Символ (имя) | Кодовая точка | Символ (имя) |
---|---|---|---|
0 | NUL (Null) | 64 | @ |
1 | SOH (Start of Heading) | 65 | A |
2 | STX (Start of Text) | 66 | B |
3 | ETX (End of Text) | 67 | C |
4 | EOT (End of Transmission) | 68 | D |
5 | ENQ (Enquiry) | 69 | E |
6 | ACK (Acknowledgment) | 70 | F |
7 | BEL (Bell) | 71 | G |
8 | BS (Backspace) | 72 | H |
9 | HT (Horizontal Tab) | 73 | I |
10 | LF (Line Feed) | 74 | J |
11 | VT (Vertical Tab) | 75 | K |
12 | FF (Form Feed) | 76 | L |
13 | CR (Carriage Return) | 77 | M |
14 | SO (Shift Out) | 78 | N |
15 | SI (Shift In) | 79 | O |
16 | DLE (Data Link Escape) | 80 | P |
17 | DC1 (Device Control 1) | 81 | Q |
18 | DC2 (Device Control 2) | 82 | R |
19 | DC3 (Device Control 3) | 83 | S |
20 | DC4 (Device Control 4) | 84 | T |
21 | NAK (Negative Acknowledgment) | 85 | U |
22 | SYN (Synchronous Idle) | 86 | V |
23 | ETB (End of Transmission Block) | 87 | W |
24 | CAN (Cancel) | 88 | X |
25 | EM (End of Medium) | 89 | Y |
26 | SUB (Substitute) | 90 | Z |
27 | ESC (Escape) | 91 | [ |
28 | FS (File Separator) | 92 | \ |
29 | GS (Group Separator) | 93 | ] |
30 | RS (Record Separator) | 94 | ^ |
31 | US (Unit Separator) | 95 | _ |
32 | SP (Space) | 96 | ` |
33 | ! | 97 | a |
34 | « | 98 | b |
35 | # | 99 | c |
36 | $ | 100 | d |
37 | % | 101 | e |
38 | & | 102 | f |
39 | ‘ | 103 | g |
40 | ( | 104 | h |
41 | ) | 105 | i |
42 | * | 106 | j |
43 | + | 107 | k |
44 | , | 108 | l |
45 | — | 109 | m |
46 | . | 110 | n |
47 | / | 111 | o |
48 | 0 | 112 | p |
49 | 1 | 113 | q |
50 | 2 | 114 | r |
51 | 3 | 115 | s |
52 | 4 | 116 | t |
53 | 5 | 117 | u |
54 | 6 | 118 | v |
55 | 7 | 119 | w |
56 | 8 | 120 | x |
57 | 9 | 121 | y |
58 | : | 122 | z |
59 | ; | 123 | < |
60 | 124 | | | |
61 | = | 125 | > |
62 | > | 126 | |
63 | ? | 127 | DEL (delete) |
Модуль string
Модуль string — простой и удобный инструмент, разграничивающий содержащиеся в ASCII символы по группам, разделяя их в строки-константы. Вот как выглядит основная часть модуля:
Мы можем использовать определённые в модуле константы для рутинных операций:
Что такое биты
Настало время вспомнить, что такое бит, базовая единица информации, которой оперируют вычислительные устройства.
Бит — это сигнал, который имеет два возможных состояния. Есть различные способы символического отображения этих состояний:
Таблица ASCII из предыдущего раздела использует то, что обычно назвали бы числами (от 0 до 127), однако для наших целей важно понимать, что это десятичные числа (с основанием 10).
Каждое из этих десятичных чисел можно выразить последовательностью бит (числом с основанием 2). Вот таблица соотношения двоичных и десятичных чисел:
Десятичное | Двоичное (кратко) | Двоичное (в байте) |
---|---|---|
0 | 0 | 00000000 |
1 | 1 | 00000001 |
2 | 10 | 00000010 |
3 | 11 | 00000011 |
4 | 100 | 00000100 |
5 | 101 | 00000101 |
6 | 110 | 00000110 |
7 | 111 | 00000111 |
8 | 1000 | 00001000 |
9 | 1001 | 00001001 |
10 | 1010 | 00001010 |
Обратите внимание, что при увеличении десятичного числа n для его отображения (а следовательно и для отображения символа, относящегося к этому числу) требуется всё больше значимых бит.
Вот удобный метод представить строки ASCII как последовательность бит. Каждый символ из строки ASCII переводится в последовательность из 8 нолей и единиц с пробелами между этими последовательностями:
Строковой литерал f-string f»
На самом деле этот метод можно использовать разве что для развлечения. Он выдаст ошибку для любого символа, не представленного в ASCII-таблице. Позже мы рассмотрим, как эта проблема решается в других кодировках.
Нам нужно больше бит
Исходя из определения бита, можно вывести следующую закономерность: при определённом количестве бит n с их помощью можно выразить 2 n разных значений.
Вот что это означает:
В качестве естественного вывода из приведённой выше формулы мы можем установить следующее: для того, чтобы вычислить количество бит, необходимых для выражения определённого числа разных значений, нам нужно найти n в уравнении 2 n =x, где переменная x известна.
Вот как можно это рассчитать:
Округление вверх в методе n_bits_required() требуется для расчёта значений, которые не являются чистой степенью двойки. К примеру, вам нужно сохранить набор из 110 различных символов. Для этого потребуется log(110) / log(2) == 6.781 бит, но поскольку бит для вычислительной техники является мельчайшей неделимой величиной, для отображения 110 различных значений нам понадобится 7 бит, при этом несколько значений останутся невостребованными.
Всё сказанное служит для обоснования одной идеи: ASCII, строго говоря, семибитная кодировка. Эта таблица содержит 128 кодовых точек, и, соответственно, символов, от 0 до 127 включительно. Это требует 7 бит:
Проблема заключается в том, что современные компьютеры не используют для хранения чего-либо семибитные последовательности. Основной единицей хранения информации современных вычислительных устройств являются восьмибитные последовательности, байты.
Прим. В этой статье под байтом подразумевается группа из 8 бит, как повелось с 60-х годов прошлого века. Если вам не по душе это новомодное название, можете называть их октетами.
То, что ASCII-таблица использует 7 бит из доступных 8, означает, что память вычислительного устройства, занятого строками символов ASCII, наполовину пуста. Для того, чтобы лучше понять, почему это происходит, вернитесь к приведённой выше таблице соответствия двоичных и десятичных чисел. Вы можете выразить числа 0 и 1 с помощью 1 бита, или вы можете использовать 8 бит, чтобы выразить их как 00000000 и 00000001 соответственно.
Прим. перев. Если быть точным, то пустой остаётся только одна восьмая часть памяти. Однако с помощью именно этого незадействованного бита можно было бы создать вдвое больше кодовых точек.
Вы можете выразить числа от 0 до 3 всего двумя битами, от 00 до 11, или использовать 8 бит, чтобы выразить их как 00000000, 00000001, 00000010 и 00000011. Самая большая кодовая точка ASCII, 127, требует только 7 значимых бит.
С учётом этого взгляните, как метод make_bitseq() преобразует строки ASCII в строки, состоящие из байт, где каждый символ требует один байт:
Неэффективное использование восьмибитной структуры памяти современных вычислительных устройств привело к появлению неструктурированного семейства конфликтующих кодировок, задействующих оставшуюся незанятой половину кодовых точек, доступных в одном байте.
Несмотря на попытку задействовать дополнительный бит, эти конфликтующие кодировки не могли отобразить все возможные символы, используемые человечеством в письменности.
Со временем появилась одна большая схема кодировки, которая объединила их. Однако, прежде чем мы до этого доберёмся, поговорим немного о краеугольных камнях схем кодировки символов — системах счисления.
Изучаем основы: другие системы счисления
В ASCII-таблице, как мы увидели, каждый символ соответствует числу от 0 до 127.
Этот диапазон чисел выражен в десятичной системе счисления. Именно эту систему используют для счёта люди, просто потому что на руках у нас по 10 пальцев.
Однако существуют и другие системы счисления, которые, в частности, широко используются в исходном коде CPython. Следует понимать, что действительное число не изменяется, а системы счисления просто по-разному его выражают.
Вопрос, какое число записано в строке «11» покажется странным, ведь для большинства очевидно, что это одиннадцать.
Однако в строке может быть представлено и другое число, в зависимости от системы счисления. Помимо десятичной, используются такие общепринятые альтернативы:
Что же мы подразумеваем, говоря что определённая система счисления имеет основу N?
Один из способов объяснения разных систем счисления заключается в том, чтобы представить, что у вас N пальцев.
Если же вам требуется более подробное объяснение систем счисления, обратитесь к книге Чарльза Петцольда «Код». В этой книге детально объясняются основы работы вычислительной техники.
Чаще в Python для обозначения того, что целое число представлено в системе счисления, отличной от десятичной, используют префиксы-литералы. Для каждой из трёх альтернативных систем существует свой литерал.
Тип литерала | Префикс | Пример |
---|---|---|
Нет | Нет | 11 |
Binary literal | 0b или 0B | 0b11 |
Octal literal | 0o или 0O | 0o11 |
Hex literal | 0x или 0X | 0x11 |
Десятичные | Двоичные | Восмеричные | Шестнадцатеричные |
---|---|---|---|
0 | 0b0 | 0o0 | 0x0 |
1 | 0b1 | 0o1 | 0x1 |
2 | 0b10 | 0o2 | 0x2 |
3 | 0b11 | 0o3 | 0x3 |
4 | 0b100 | 0o4 | 0x4 |
5 | 0b101 | 0o5 | 0x5 |
6 | 0b110 | 0o6 | 0x6 |
7 | 0b111 | 0o7 | 0x7 |
8 | 0b1000 | 0o10 | 0x8 |
9 | 0b1001 | 0o11 | 0x9 |
10 | 0b1010 | 0o12 | 0xa |
11 | 0b1011 | 0o13 | 0xb |
12 | 0b1100 | 0o14 | 0xc |
13 | 0b1101 | 0o15 | 0xd |
14 | 0b1110 | 0o16 | 0xe |
15 | 0b1111 | 0o17 | 0xf |
16 | 0b10000 | 0o20 | 0x10 |
17 | 0b10001 | 0o21 | 0x11 |
18 | 0b10010 | 0o22 | 0x12 |
19 | 0b10011 | 0o23 | 0x13 |
20 | 0b10100 | 0o24 | 0x14 |
Кстати, вы можете сами убедиться, что подобные способы записи чисел очень часто используется в Стандартной Библиотеке Python. Найдите папку lib/python3.7/ в своей системе, перейдите в неё и введите команду:
Введение в Юникод
Как видите, проблема ASCII в том, что этой таблицы недостаточно для отображения знаков, символов и глифов, использующихся во всех языках и диалектах мира. Её недостаточно даже для английского языка.
Юникод служит тем же целям, что и ASCII, но содержит намного больший набор кодовых точек. В период времени между появлением ASCII и принятием Юникода использовалось ещё несколько различных кодировок, но рассматривать их подробно нет смысла, так как Юникод и одна из его схем, UTF-8, в настоящее время стали использоваться практически повсеместно.
Вы можете представить Юникод как расширенную версию ASCII-таблицы — с 1 114 112 возможными кодовыми точками, от 0 до 1 114 111. Это 17*(2 16 ) или 0x10ffff в шестнадцатеричном представлении. Фактически, ASCII является частью Юникода, так как первые 128 символов этих кодировок полностью совпадают.
Юникод содержит практически любой символ, который только можно представить, включая дополнительные непечатаемые. Например, кодовая точка 8207 соответствует отметке RTL, которая используется для смены направления письма. Она полезна в текстах, где абзацы на одном из европейских языков соседствуют с абзацами на арабских языках.
Прим. Кстати, если уж мы хотим быть совсем точны в деталях, то надо отметить ещё один факт. Исторически сложилось, что в Юникоде доступны только 1 111 998 кодовых точек.
Юникод и UTF-8
Довольно скоро стало понятно, что все необходимые символы невозможно вместить в таблицу, используя только один байт. Современные, более ёмкие кодировки требовали использования больших объёмов.
Ранее мы упоминали, что Юникод сам по себе не является кодировкой. И вот почему.
Юникод не содержит указаний по извлечению из текста бит, он работает только с кодовыми точками. В нём нет стандарта конверсии текста в двоичные данные и обратно.
Юникод является абстрактным стандартом кодировки. Для практического его применения чаще всего используют схему UTF-8. Стандарт Юникод (таблица соответствий символов кодовыми точкам) определяет несколько различных кодировок на основе единого набора символов.
Как и менее распространённые UTF-16 и UTF-32, UTF-8 — формат кодировки для отображения символов Юникода в двоичном виде, используя один или несколько байт на один символ. UTF-16 и UTF-32 мы обсудим чуть позже, но пока нам интересен UTF-8 как самый популярный формат.
Сначала требуется разобрать термины «кодирование» и «декодирование».
Кодирование и декодирование в Python 3
Тип данных str в Python 3 рассчитан на представление текста в удобном для чтения формате и может содержать любые символы Юникода.
Кодирование и декодирование — это процесс перехода данных из одной формы в другую.
Таким образом символ ñ требует два байта для бинарного представления с помощью UTF-8.
Python 3: всё на Юникоде
Python 3 полностью реализован на Юникоде, а точнее на UTF-8. Вот что это означает:
Мы делаем упор на эти моменты, чтобы вы вдруг не подумали, что кодировка UTF-8 является универсальной. Она действительно широко распространена, но вы вполне можете столкнуться и с другими вариантами. Не будет лишним предусмотреть это в коде.
Один байт, два байта, три байта, четыре…
Одна из важнейших особенностей UTF-8 состоит в том, что это кодировка с переменным размером.
Вспомните раздел, посвящённый ASCII. Любой символ в этой таблице требует максимум одного байта пространства. Это можно быстро проверить с помощью следующего генератора:
С UTF-8 дела обстоят по-другому. Символы Юникода могут занимать от одного до четырёх байт. Вот пример четырёхбайтного символа:
Это небольшая, но важная особенность метода len() :
Таблица ниже показывает, сколько байт занимают основные типы символов.
*Такие как английский, арабский, греческий, ирландский.
**Масса языков и символов, в основном китайский, японский и корейский с разделением по томам (а также ASCII и латиница).
***Дополнительные символы китайского, японского, корейского и вьетнамского, а также другие символы и эмоджи.
Прим. У UTF-8 есть и другие технические особенности. Те, кто работает на Python, редко с ними сталкиваются, поэтому мы не будем раскрывать их в этой статье, но упомянем вкратце, чтобы сохранить полноту картины. Так, UTF-8 использует коды-префиксы, указывающие на количество байт в последовательности. Такой приём позволяет декодеру группировать байты в условиях кодировки с переменным размером. Количество байт в последовательности определяется первым её байтом. Другие технические подробности можно найти на странице Википедии, посвящённой UTF-8 или на официальном сайте.
Особенности UTF-16 и UTF-32
Рассмотрим альтернативные кодировки, UTF-16 и UTF-32. Различие между ними и UTF-8 в основном практическое. Продемонстрируем величину расхождения с помощью перевода туда и обратно:
В данном случае, когда мы кодируем четыре буквы греческого алфавита в двоичные данные с помощью UTF-8, а декодируем обратно в текст с использованием UTF-16, на выходе получается строка с совершенно другими символами (из корейского алфавита).
Так происходит, если для кодирования и декодирования применяют разные кодировки. Два варианта декодирования одного бинарного объекта могут вернуть текст даже на другом языке.
Таблица ниже демонстрирует количество байт, используемых в разных кодировках:
Кодировка | Байт на символ (включительно) | Варьируемая длина |
---|---|---|
UTF-8 | От 1 до 4 | Да |
UTF-16 | От 2 до 4 | Да |
UTF-32 | 4 | Нет |
Любопытный аспект семейства UTF: UTF-8 не всегда занимает меньше памяти, чем UTF-16. Хотя с точки зрения математики это выглядит маловероятным, однако это возможно:
Так получается из-за того, что кодовые точки в диапазоне от U+0800 до U+FFFF (от 2048 до 65535 в десятичной системе) в кодировке UTF-8 занимают три байта, а в UTF-16 только два.
Это не означает, что нужно работать с UTF-16, независимо от того, насколько часто вы работаете с символами в этом диапазоне. Один из самых важных поводов придерживаться UTF-8 — в мире кодировок лучше держаться вместе с большинством.
Кроме того, в 2019 году компьютерная память стоит дёшево, и экономия четырёх байт за счёт использования нестандартной кодировки вряд ли стоит усилий.
Прим. перев. Есть и более весомые причины использовать UTF-8. Среди них её обратная совместимость с ASCII, а также то, что это самосинхронизирующаяся кодировка.
Python и встроенные функции
Вы освоили самую сложную часть статьи. Теперь посмотрим, как всё изученное реализуется на Python.
В Python есть несколько встроенных функций, каким-либо образом относящихся к системам счисления и кодировке:
Логически их можно сгруппировать по назначению.
В таблице ниже эти функции разобраны более подробно:
Функция | Форма | Тип аргументов | Тип возвращаемых данных | Назначение |
---|---|---|---|---|
ascii() | ascii(obj) | Различный | str | Представление объекта символами ASCII. Не входящие в таблицу символы экранируются |
bin() | bin(number) | number: int | str | Бинарное представление целого чиста с префиксом «0b» |
bytes() | bytes(последовательность_целых_чисел) |
bytes([i])
i
int(x, base=10)
len(c) == 1
str(b[, enc[, errors]])
Дальше можно посмотреть полезные примеры использования этих функций.