как узнать перпендикулярны ли векторы по координатам
Нахождение вектора, перпендикулярного данному вектору, примеры и решения
Данная статья раскрывает смысл перпендикулярности двух векторов на плоскости в трехмерном пространстве и нахождение координат вектора, перпендикулярному одному или целой паре векторов. Тема применима для задач, связанных с уравнениями прямых и плоскостей.
Мы рассмотрим необходимое и достаточное условие перпендикулярности двух векторов, решим по методу нахождения вектора, перпендикулярному заданному, затронем ситуации по отысканию вектора, который перпендикулярен двум векторам.
Необходимое и достаточное условие перпендикулярности двух векторов
Применим правило о перпендикулярных векторах на плоскости и в трехмерном пространстве.
При условии значения угла между двумя ненулевыми векторами равным 90 ° ( π 2 радиан) называют перпендикулярными.
Что это значит, и в каких ситуациях необходимо знать про их перпендикулярность?
Установление перпендикулярности возможно через чертеж. При отложении вектора на плоскости от заданных точек можно геометрически измерить угол между ними. Перпендикулярность векторов если и будет установлена, то не совсем точно. Чаще всего данные задачи не позволяют делать это при помощи транспортира, поэтому данный метод применим только в случае, когда ничего больше о векторах неизвестно.
Большинство случаев доказательства перпендикулярности двух ненулевых векторов на плоскости или в пространстве производится с помощью необходимого и достаточного условия перпендикулярности двух векторов.
Вторая часть доказательства
Условие перпендикулярности на координатной плоскости
Применим на практике и рассмотрим на примерах.
Для решения данной задачи необходимо найти скалярное произведение. Если по условию оно будет равным нулю, значит, они перпендикулярны.
Ответ: да, заданные векторы a → и b → перпендикулярны.
Используем условие перпендикулярности двух векторов в пространстве в квадратной форме, тогда получим
Имеются случаи, когда вопрос о перпендикулярности невозможен даже при необходимом и достаточном условии. При известных данных о трех сторонах треугольника на двух векторах, возможно, найти угол между векторами и проверить его.
Нахождение вектора, перпендикулярного данному
Важно научиться находить координаты вектора, перпендикулярного заданному. Это возможно как на плоскости, так и в пространстве при условии перпендикулярности векторов.
Нахождение вектора, перпендикулярного данному в плоскости.
Ненулевой вектор a → может иметь бесконечное количество перпендикулярных векторов на плоскости. Изобразим это на координатной прямой.
Рассмотрим доказательство на примере.
Нахождение координат вектора, перпендикулярного двум заданным векторам
При решении применяется понятие векторного произведения векторов.
Разберем подробнее векторное произведение на примере задачи.
Для решения необходимо найти векторное произведение векторов. (Необходимо обратиться к пункту вычисления определителя матрицы для нахождения вектора). Получим :
Ортогональность векторов. Перпендикулярность векторов.
Вектора a и b называются ортогональными, если угол между ними равен 90°. (рис. 1).
рис. 1 |
Примеры задач на ортогональность векторов
Примеры плоских задач на ортогональность векторов
Найдем скалярное произведение этих векторов:
Ответ: так как скалярное произведение равно нулю, то вектора a и b ортогональны.
Найдем скалярное произведение этих векторов:
Ответ: так как скалярное произведение не равно нулю, то вектора a и b не ортогональны.
Найдем скалярное произведение этих векторов:
Примеры пространственных задач на ортогональность векторов
Так в случае пространственной задачи для векторов a = < ax ; ay ; az > и b = < bx ; by ; bz >, условие ортогональности запишется следующим образом:
Найдем скалярное произведение этих векторов:
Ответ: так как скалярное произведение равно нулю, то вектора a и b ортогональны.
Найдем скалярное произведение этих векторов:
Ответ: так как скалярное произведение равно нулю, то вектора a и b ортогональны.
Найдем скалярное произведение этих векторов:
Ответ: вектора a и b будут ортогональны при n = 2.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Ортогональность векторов. Перпендикулярность векторов.
Вектора a и b называются ортогональными, если угол между ними равен 90°. (рис. 1).
рис. 1 |
Примеры задач на ортогональность векторов
Примеры плоских задач на ортогональность векторов
Так в случае плоской задачи для векторов a = < ax ; ay > и b = < bx ; by > условие ортогональности запишется следующим образом:
Найдем скалярное произведение этих векторов:
Ответ: так как скалярное произведение равно нулю, то вектора a и b ортогональны.
Найдем скалярное произведение этих векторов:
Ответ: так как скалярное произведение не равно нулю, то вектора a и b не ортогональны.
Найдем скалярное произведение этих векторов:
Примеры пространственных задач на ортогональность векторов
Так в случае пространственной задачи для векторов a = < ax ; ay ; az > и b = < bx ; by ; bz > условие ортогональности запишется следующим образом:
Найдем скалярное произведение этих векторов:
Ответ: так как скалярное произведение равно нулю, то вектора a и b ортогональны.
Найдем скалярное произведение этих векторов:
Ответ: так как скалярное произведение равно нулю, то вектора a и b ортогональны.
Найдем скалярное произведение этих векторов:
Ответ: вектора a и b будут ортогональны при n = 2.
Векторы, действия с векторами
Начальные сведения
Познакомьтесь с определением вектора, его геометрическим образом, принятыми обозначениями и другими сопуствтующими определениями.
Детально разобраны операции сложения векторов и умножения вектора на число, перечислены их свойства, даны графические иллюстрации.
Векторы в системе координат
Получите представление о координатной (числовой) прямой, узнайте что называют координатой точки.
Узнайте как вводится прямоугольная декартова система координат на плоскости и в пространстве и как в ней определяются координаты точек.
Познакомьтесь с определениями координатных векторов, с разложением произвольного вектора по координатным векторам и определением координат вектора.
На примерах разобрано применение формулы для нахождения координат вектора по известным координатам его начала и конца.
Научитесь находить длину вектора по его известным координатам, запомните соответствующую формулу и разберите представленные решения примеров.
Узнайте что называют углом между векторами и научитесь находить угол по известным координатам векторов с использованием соответствующей формулы.
Даны определения проекции вектора на ось (направление) и числовой проекции вектора, рассмотрены примеры.
Операции с векторами
Подробно показано как выполняется сложение векторов и умножение вектора на число, когда известны их координаты, приведены примеры с доступно изложенными решениями.
Введено определение скалярного произведения векторов, перечислены его свойства, дан его физический смысл и формулы для его вычисления, показаны решения характерных примеров.
Познакомьтесь с векторным произведением векторов, его свойствами, геометрическим и механическим смыслом, рассмотрите решения характерных примеров и задач.
Изучите смешанное произведение векторов: ознакомьтесь с определением, свойствами и геометрическим смыслом, научитесь вычислять смешанное произведение и решать другие задачи.
Коллинеарность, перпендикулярность, компланарность
Познакомьтесь с необходимым и достаточным условием коллинеарности двух векторов, научитесь находить вектор, коллинеарный данному.
Показано как проверять перпендикулярность векторов посредством вычисления их скалярного произведения, приведены решения характерных примеров.
Разобрано как выявить являются ли три вектора компланарными с помощью вычисления смешанного произведения, показаны решения примеров.
Приложения
Получена формула для вычисления расстояния от точки до точки по координатам, разобраны решения примеров.
Научитесь находить координаты середины отрезка, когда известны координаты его концов, изучите теорию и рассмотрите готовые решения примеров.
Выведены формулы для нахождения координат точки, которая делит отрезок в заданном отношении, показаны решения характерных примеров.
n-мерные векторы
Дано определение n-мерного вектора, введены операции сложения и умножения на число, перечислены их свойства.
Познакомьтесь с определениями линейной зависимости и независимости системы векторов, научитесь исследовать систему векторов на линейную зависимость.
Узнайте про размерность и базис векторного пространства, рассмотрите примеры разложения векторов по базису.
Как найти вектор, перпендикулярный вектору
Вы будете перенаправлены на Автор24
Понятие вектора и перпендикулярности векторов
Вначале надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.
Отрезком будем называть такую часть прямой, которая ограничена точками с двух сторон.
Концами отрезка будем называть точки, которые его ограничивают.
Для введения определения вектора один из концов отрезка назовем его началом.
Вектором (направленным отрезком) будем называть такой отрезок, у которого обозначено, какая граничная точка его начало, а какая является его концом.
Нулевым вектором будем называть любую точку, которая принадлежит плоскости.
Введем теперь, непосредственно, определение коллинеарных векторов.
Два ненулевых вектора будем называть перпендикулярными (ортогональными), если они лежат на каких-либо перпендикулярных прямых (рис.2).
Готовые работы на аналогичную тему
Также введем определение скалярного произведения, которое будет нам необходимо далее.
Скалярным произведением двух данных векторов будем называть такой скаляр (или число), который равняется произведению длин двух этих векторов с косинусом угла между данными векторами.
Математически это может выглядеть следующим образом:
Скалярное произведение также можно найти с помощью координат векторов следующим образом
$\overline<α>\overline<β>=α_1 β_1+α_2 β_2+α_3 β_3$
Признак перпендикулярности через пропорциональность
Чтобы ненулевые векторы были перпендикулярны между собой, необходимо и достаточно, чтобы их скалярное произведение этих векторов равнялось нулю.
$\overline<α>\cdot \overline<β>=|\overline<α>||\overline<β>|cos90^\circ =|\overline<α>||\overline<β>|\cdot 0=0$
По определению 6, будет верно равенство
Найдем скалярное произведение для этих векторов через формулу, данную выше
$\overline<α>\cdot \overline<β>=1\cdot 2+(-5)\cdot 1+2\cdot \frac<3><2>=2\cdot 5+3=0$
Значит, по теореме 1, эти вектор перпендикулярны.
Нахождение перпендикулярного вектора к двум данным векторам через векторное произведение
Введем вначале понятие векторного произведения.
Векторным произведением двух векторов будем называть такой вектор, который будет перпендикулярен обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют туже ориентацию, как и декартова система координат.
Чтобы найти векторное произведение, будем пользоваться формулой
Так как вектор векторного произведения двух векторов перпендикулярен обоим этим векторам, то он и будет иском вектором. То есть, для того, чтоб найти перпендикулярный для двух векторов вектор, нужно просто найти их векторное произведение.
Найдем векторное произведение данных векторов.