как узнать сколько выделяет тепла процессор
TDP – Тепловыделение процессора: что это за параметр и как ее узнать?
Здравствуйте, дорогие читатели моего блога! Сегодня обсудим тепловыделение процессора – что это такое и на что влияет такой параметр, какое бывает максимальное и оптимальное значение, потребляет ли процессор полностью заявленное тепловыделение постоянно. Также рассмотрим несколько ЦП с низким выделением тепла для игр.
Что такое TDP
Thermal Design Power — одна из важных характеристик в описании ЦП. Переводится как расчетная тепловая мощность.
Эта величина указывает средние значения выделения тепла «камнем» при работе.
Может рассчитываться по разным схемам и указывать разные значения: например, когда все ядра полностью загружены, так и в «щадящем» режиме, когда CPU производит несложные вычисления.
Эта величина связана с энергопотреблением, однако не равна ему. Обычно центральный процессор выделяет в виде тепла почти всю энергию, которую потребляет. Соответственно, чем выше энергопотребление, тем выше будет и TDP.
Настройка TDP
Это гибкая величина, которую можно отрегулировать разными способами. Самые распространенные – управление тактовой частотой ЦП и напряжением. Сделать это может через БИОС или с помощью специальных утилит и сам пользователь. Кроме этого, «доработку напильником» выполняет и сам производитель.
Один и тот же CPU может использоваться в разных устройствах: тонком ультрабуке или мощном настольном ПК. Естественно, требования к тепловыделению у них разные: у лептопа этот показатель должен быть сведен к минимуму, так как его возможности теплоотвода ограничены.
Например, у Intel такое широко практикуется с массовыми ЦП i5 9400F, i7 9700K, i3 9100F или i3 8100. Аналогично дела обстоят у AMD, только модели другие. 65 вт — это много для ноутбука, однако вполне приемлемо для десктопного ПК. Соответственно, значение тепловыделения нужно коррелировать программными и аппаратными средствами.
Повысить тепловыделение (что зависит от повышения мощности, в первую очередь), можно благодаря внедрению более «жестких» сценариев разгона тактовой частоты и увеличения подаваемого напряжения. Чем больше CPU проработает в таком режиме, тем сильнее он нагреется.
В щадящем же режиме из-за невысокой нагрузки и тепла выделяется меньше. Кстати, аналогично дело обстоит с планшетами и смартфонами: на тех же моделях «камней» производители могут внедрять разные схемы TDP, поэтому производительность девайсов внутри одной линейки будет отличаться.
Это хорошо хотя бы тем, что производитель может адаптировать один и тот же чип под разные задачи, не «изобретая велосипед» повторно. Разработки по настройке TDP обходятся дешевле, чем создание с нуля процесса для производства CPU. А это сказывается на снижении конечной стоимости девайсов для потребителей.
Как узнать TDP процессора? Определить можно по модели, найдя спецификацию на сайте производителя. Узнать же модель используемого ЦП можно с помощью бесплатной утилиты CPU‑Z или аналогичной — например, AIDA64 или Sandra.
Несколько процессоров с небольшим тепловыделением
Как и обещал, для примера несколько девайсов, которые выделяют мало тепла:
О том, как нагрузить CPU для проверки температуры, можно почитать здесь. Также советую ознакомиться со статьями «Какие бывают сокеты для ЦП» и «При какой температуре процессора отключается компьютер».
Если вы хотите своевременно получать уведомления о публикации новых материалов, подпишитесь на новостную рассылку. И не забывайте, что делясь постами этого блога в социальных сетях, вы помогаете его продвижению, за что я буду очень признателен. До скорой встречи!
Как рассчитать охлаждение CPU
Процессоры греются, этим фактом никого не удивишь, и поэтому на них ставят кулеры.
Все хорошо, пока CPU работает на штатных частотах с предназначенным для него или подобранным специалистом кулером, но когда компьютер собирается самостоятельно, или система подвергается разгону, к охлаждению нужно подходить с особым вниманием.
Можно, конечно, не долго думая, брать кулер с медным килограммовым радиатором и огромным вентилятором, который не только охладит процессор, но и соберет пыль из всех соседних комнат, не говоря уже о звуковой имитации взлета «Боинга-747».
Есть другой вариант: можно просто посчитать, какой кулер с каким радиатором и каким вентилятором поддержит оптимальную температуру CPU, не создавая при этом лишних звуков и сквозняков в квартире.
Почему греется процессор?
Нагрев, прежде всего, связан с тем, что протекание тока в полупроводнике неминуемо влечет выделение тепла.
Из школьного курса физики известно, что энергия не берется из ниоткуда и не девается в никуда.
В данном случае она просто переходит в тепловую.
Ситуацию осложняет то, что микросхема «окружена» веществами, которые по своей природе плохо проводят тепло (корпус, изолирующие слои, etc.) и не дают тем самым кристаллу самостоятельно охладиться.
Зачем охлаждать процессор?
Кроме того, что при повышении температуры процессора на 10 градусов его срок годности уменьшается вдвое, теряется приблизительно 1.5% производительности CPU.
Но даже вдвое уменьшенный срок службы камня превышает срок его «актуальности» (ты его поменяешь раньше, чем он выйдет из строя), а 1.5% от 2 ГГц — это всего-то 30 МГц.
Поэтому главная причина охлаждения CPU — это нестабильная работа и, в итоге, выход процессора из строя при превышении определенной критической температуры в течение определенного времени (зачастую, довольно продолжительного).
Например, существует неписанная зависимость летней стабильности системы: летом компы начинают глючить.
А о весомости этого аргумента можешь спросить любого счастливого обладателя раннего Athlon’а или Duron’а.
Да и эксперименты Тома Пабста с «естественным» охлаждением новых процессоров ты, возможно, видел в Интернете.
Это связано в первую очередь с тем, что в процессе жизнедеятельности в камне происходит помимо чисто электрических явлений еще и несметное количество электрохимических реакций, протекание которых во многом зависит от температуры.
Некоторым реакциям высокая температура идет на пользу, но в большинстве случаев ее влияние негативно.
Так что охлаждение необходимо!
Маркировка процессоров
Для того чтобы рационально охлаждать кристалл, хорошо бы знать, до какой температуры ему не следует нагреваться.
Кроме экспериментального метода определения этой температуры и метода чтения технических характеристик есть еще один способ — чтение маркировки.
Найти ее можно непосредственно на процессоре.
А можно и с помощью специально предназначенной утилиты.
Информацию о максимально допустимой температуре Athlon’ов ХР (Thoroughbred, Thoroughbred-B и Palomino), МР, а также Duron’ов содержит третий справа символ их OPN-номера; Athlon’ов SlotA — пятый (считая последний отдельно стоящий).
Интерпретируются эти символы следующим образом: S=95, T=90, V=85, Y=75, R=70, X=65, Q=60 градусов Цельсия.
К первой группе относятся процессоры, маркировка которых начинается с AXD, A, D; второй — AMD-A, AMD-K7, etc.
Процессоры Intel максимальной температуры в своей маркировке, к сожалению, не содержат.
Есть еще одно «Но»: некоторые недобросовестные продавцы перепиливают маркировку CPU с целью продать их подороже.
Естественно, гарантию сохранности оригинальных данных о максимальной температуре процессора они не дают.
Посему не советую тебе особо доверять надписи на камне, купленном у Васи с радиорынка.
Пользуйся софтварным методом определения маркировки.
Тепловыделение процессора
Тепловыделение при разгоне
При разгоне тепловыделение CPU растет пропорционально частоте.
Если ты разгоняешь Athlon XP 1700+ (1.46 GHz), у которого типичное тепловыделение 44.9 Вт до 2000+ (1.66 GHz), то его тепловыделение будет 44.9 x 1.66 / 1.46= 51.05 Вт.
Если быть точным, растет оно не совсем пропорционально: пропорционально оно растет с увеличением частоты шины, а при увеличении напряжения происходит скачок.
Но в целом зависимость верна, и можно считать увеличение тепловыделения пропорциональным увеличению тактовой частоты.
Виды охлаждения
Для ПК существует два основных вида охлаждения: жидкостное и воздушное.
При использовании первого система охлаждения имеет такой вид: непосредственно к процессору прилегает полая внутри металлическая пластина, через которую с помощью насоса прогоняется жидкость.
Вода имеет большую чем воздух теплопроводность, поэтому гораздо лучше отводит от процессора тепло.
Воздушная система охлаждения представляет собой совокупность радиатора и вентилятора, именуемую в народе просто «кулером».
Что такое TDP у процессора и видеокарты?
Содержание
Содержание
Возможно, при выборе процессора, видеокарты или системы охлаждения вы видели буквы TDP в характеристиках устройства. Сегодня попробуем разобраться что же скрывается за этой аббревиатурой, какое отношение она имеет к температуре и энергопотреблению.
Абревиатура TDP (Thermal Design Power) обозначает конструктивные требования по теплоотводу или просто требования по теплоотводу для системы охлаждения. Если проще, TDP служит ориентиром для выбора системы охлаждения и отображает количество тепла, выделяемое устройством во время среднестатистической нагрузки. Значение TDP выражается в ватах, и вот тут зачастую возникает путаница между TDP и энергопотреблением.
Многие принимают TDP за энергопотребление. И нельзя сказать, что это в корне неверно, так как у TDP и энергопотребления есть взаимосвязь, но значение TDP, указанное производителем, несет несколько иной смысл. Значение TDP относится к тепловым ваттам, а не к электрическим. TDP не показатель электрической мощности, а всего лишь спецификация для системы охлаждения.
Разберем подробнее, что же означает TDP
TDP — это значение, которое используют в очень широком смысле Intel и AMD для обозначения информации о тепловыделении своих продуктов. По большому счету, TDP — это просто рекомендация по выбору системы охлаждения, чтобы процессор нормально функционировал.
TDP — это не какой-то конкретный показатель, как энергопотребление, это больше абстрактное значение, посчитанное производителями по собственной формуле во время работы процессора в определенных условиях и нагрузках. Какие это были условия и какая нагрузка, никто, конечно, не уточняет, но эти тестирования проводятся явно не с максимальной нагрузкой.
Именно поэтому при покупке процессора с заявленным TDP 95 Вт и системы охлаждения с заявленным производителем TDP 95 Вт не значит, что процессор не будет подвержен перегреву при ваших условиях эксплуатации.
Так как процессор при работе почти 100% потребляемой энергии переводит в тепловую энергию, можно сказать, что энергопотребление и тепловыделение — это равные значения.
Заявленный TDP не отображает энергопотребление и производительность
Разные производители рассчитывают требования по отводу тепла для своих устройств по-разному, поэтому величина не может напрямую использоваться для сравнения энергопотребления процессоров, особенно в контексте разных архитектур и разных производителей.
Например, процессор потребляет 100 Вт с максимальной рабочей температурой до 95°С, у другого процессора такое же потребление, но его максимальная рабочая температура составляет всего 75 °С. Очевидно, что для процессора 2 потребуется более мощная система охлаждения, соответственно, производитель укажет более высокий TDP, при этом уровень энергопотребления будет одинаковым.
Зачастую требования по теплоотводу заявляются даже для целого семейства процессоров.
Например, Intel для Core i9 10900K, Core i7 10700K и Core i5 10600K для всех трех моделей указывает TDP 125 Вт, в то время как рассеивать тепла системе охлаждения с младшими моделями придется значительно меньше.
Так же существенно отличается между собой энергопотребление и производительность этих процессоров.
Помимо этого, процессоры Intel Core i9 10900K с заявленным TDP 125 Вт могут легко потреблять во время работы 200, а то и все 250 Вт.
Все дело в том, что в штатную работу процессоров начинают вмешиваться производители материнских плат, намеренно увеличивая производительность выше номинальной, чтобы их продукт смотрелся лучше на фоне продуктов конкурентов.
Компания AMD так же указывает одно значение TDP для продуктов с разным уровнем производительности.
Например, Ryzen 3700X имеет TDP 65 Вт, в то время как младшая модель Ryzen 3600 имеет точно такое же TDP, а модель 3600X и вовсе 95 Вт.
Энергопотрбеление процессоров AMD так же сильно далеко от максимального значения TDP указанного производителем, при работе процессор Ryzen 2700X без каких-либо манипуляций с Bios может легко потреблять 160–170 Вт энергии при Max TDP 105 Вт.
И только при отключении в Bios «Precision Boost Overdrive» энергопотребление начинает соответствовать значению TDP, но это уже не работа по умолчанию.
TDP и разгон
Во время разгона компонентов, будь то процессор или видеокарта, увеличивается их энергопотребление и, следовательно, увеличивается требование к системе охлаждения (TDP). Рост энергопотребления во время разгона может достигать 30, а то и 50% от базовых значений, соответственно и требования по охлаждению вырастут пропорционально.
Но и тут все не так просто. Если говорить про разгон в контексте энергопотребления, то ручная установка напряжения и частоты может понизить энергопотребление процессора во время работы и соответственно снизит требования по охлаждению.
Например, процессор Ryzen 2700X в стоке потребляет 140 Вт и работает на частоте 4000 МГц при прохождении бенчмарка Cinebench R20. Во время ручного разгона процессор так же работает на частоте 4000 МГц, но потребляет всего 115 Вт. Результат производительности в обоих случаях идентичный.
AMD Ryzen 7 2700X Default
AMD Ryzen 7 2700X Overclocking
TDP у видеокарты
Для обычных пользователей TDP видеокарты не имеет такого большого значения, как TDP для процессоров. Все видеокарты уже комплектуются системами охлаждения от производителя, где проверяются на эффективность отвода тепла при максимальных и длительных нагрузках с конкретной видеокартой. Безусловно, можно заменить систему охлаждения на более производительную, но в этом случае вы скорее всего лишитесь гарантии, плюс дополнительно потратитесь на систему охлаждения. Лучше изначально выбирать видеокарту с более производительной системой охлаждения, это не только обеспечит лучшее охлаждение, но может и повысить производительность.
Выводы
При выборе системы охлаждения для процессора нужно отталкиваться от значения TDP, указанного производителем устройства, однако покупать охлаждение лучше всего с запасом минимум 50% от заявленного TDP. А если вы решите заняться разгоном, то к выбору системы охлаждения нужно подойти еще тщательнее.
TDP — достаточно важный параметр, но сейчас это больше маркетинговый термин, из-за чего каждая из компаний старается указать наименьше значение для своего изделия. А с учетом того, что в работу процессора вмешиваются производители материнских плат, это значение утратило свое первоначальное обозначение.
TDP заявлен один, энергопотребление — совершенно другое, а брать систему охлаждения нужно с запасом на 50% от заявленного TDP.
Все это только вводит покупателя в заблуждение нежели помогает с выбором охлаждения. Было бы куда проще если бы указывался максимальный TDP или энергопотребление для изделия, нежели какое-то абстрактное значение.
Сколько тепла выделяет мой компьютер?
на страницах сайта
www.electrosad.ru
При грамотном проектировании ПК, одним из важнейших этапов этой работы является расчет системы охлаждения компьютера и теплового режима его узлов. И не только при проектировании в проектных организациях, а и при их доработках, разгоне и моддинге в домашних условиях. Правда в последнем случае эти расчеты могут иметь меньшую точность. У меня иногда возникает ощущение, что китайские корпуса просчитываются с еще меньшей точностью, если вообще просчитываются. И если Вам необходим компьютер работающий при любой температуре, при разгоне его узлов или имеющий низкий уровень шума, необходимо уметь посчитать его тепловыделение и сделать хотя бы ориентировочный расчет его теплообмена, но с обязательной последующей проверкой эффективности после выполнения конструкции. Обращаю Ваше внимание на то что точные расчеты требуют большого объема работы и опыта.
Вступление.
Существует несколько подходов к расчету тепловыделения в корпусе компьютера, но здесь хочу остановиться на четырех. Каждый из них имеет свои достоинства и недостатки.
По паспортным значениям потребляемой узлами мощности,
Достоинство: доступность, простота.
Недостатки: высокая погрешность и как результат, завышенные требования к системе охлаждение.
Просто пойти на сайт представляющий сервис для расчета тепловыделения (потребляемой мощности), выбрать нужные узлы и надеясь на современность их базы и правильность заложенных величин применить их результаты.
Достоинство: не надо искать данные, они должны присутствовать в базах предлагаемых сервисов.
Недостатки: базы не успевают за производителями узлов, часто они содержат недостоверные данные.
В статье мы не будем его рассматривать, для его выполнения надо только знать адрес ресурса и состав узлов Вашего компьютера и время.
По потребляемой узлами мощности с учетом коэффициента тепловыделения и типовой загрузки узлов,
Достоинство: более высокая точность (оптимальность).
Недостатки: необходим большой объем информации или опыт, знание характеристик узлов, режимов работы ПК.
По результатам экспериментальных измерений приборами потребляемой мощности и тестов компьютера. Тестирование можно выполнить хотя бы крайних значений, тепловыделение в режиме покоя и при полной загрузке
Достоинство: высокая точность величины для каждого типового режима работы.
Недостатки: необходимость проведения специальных исследований и измерений.
Расчет потребляемой ПК мощности, по паспортным значениям потребляемой мощности узлов
Когда возникает вопрос «Сколько тепла выделяет мой компьютер?», мы пытаемся первым делом найти данные о тепловыделении узлов которые стоят в корпусе Вашего ПК. Но таких данных нигде нет. Максимум что мы находим это потребляемые узлами токи по цепям питания 3,3; 5; 12 В. Да и то не всегда.
Эти значения токов потребления чаще всего имеют пиковые значения и предназначены скорее для выбора блока питания, чтобы исключить его перегрузку по току.
Поскольку все устройства внутри компьютера питаются постоянным током, то нет проблем для определения пиковой (именно пиковой) мощности потребления Вашим узлом. Для этого просто определяется сумма мощностей потребляемых по каждой линии, путем перемножения тока и напряжения потребляемых по цепи (Обращаю Ваше внимание, никакие коэффициенты для пересчета не применяются — постоянный ток.).
Как Вы понимаете это весьма приблизительная оценка, которая в реальной жизни почти никогда не выполняется, ведь не работают одновременно все узлы компьютера в пиковом режиме. Операционная система работает с узлами ПК по определенным алгоритмам. Информация читается — обрабатывается — записывается — какая-то ее часть выводится на средства контроля. Эти операции выполняются над пакетами данных.
В интернете имеется множество оценок именно величины пиковой мощности потребления взятой из характеристик узлов.
Те расчеты, которые сделаны 2-3 года назад, в принципе не соответствуют текущей ситуации. Потому что за эти годы производители модернизировали свои узлы что привело к снижению потребляемой ими мощности.
Последние данные приведены в таблице 1.
Мы видим данные имеют очень широкий разброс, он определяется конкретной моделью Вашего узла. Узлы различных производителей, тем более произведенные в разное время имеют большой разброс потребляемой мощности. В принципе расчет вы можете сделать самостоятельно.
Расчет потребляемой ПК мощности выполняется в несколько этапов.
Сбор сведений о потребляемой узлом мощности,
Расчет общей потребляемой мощности и выбор БП,
Расчет суммарного потребления ПК (с учетом блока питания).
Составной частью расчета тепловыделения является расчет потребляемой компьютером мощности. Из которого определяется мощность блока питания, выбирается конкретная модель, после чего оценивается его тепловыделение. Поэтому выполняя тепловой расчет, приходится сначала собирать данные о потребляемой узлами компьютера мощности.
Но пока, даже потребляемая мощность не всегда приводится производителями узлов компьютера, иногда на табличке с параметрами приводится величина питающего напряжения и потребляемого тока по данному напряжению. Как уже говорилось выше, на постоянном токе, который применяется для питания узлов компьютера, произведение питающего напряжения на ток потребляемый по данному напряжению и говорит о потребляемой мощности.
Исходя из суммарной потребляемой мощности (приняв ее за мощность тепловыделения) можно выполнить предварительный или ориентировочный расчет системы охлаждения. Этот расчет обеспечит скорее избыточное охлаждения Вашего ПК, что в условиях большой его загрузки и соответственно максимального тепловыделения дает некоторое приближение к реальному тепловыделению и обеспечит нормальное охлаждение. Но когда ПК используется на обычных (не ресурсоемких) приложениях, рассчитанная таким образом система охлаждения явно избыточна, и обеспечивая нормальное функционирование узлов ПК, создает неудобства пользователю за счет повышенного уровня шума.
В первую очередь Вы должны знать, что потребляемая мощность и тепловыделение узлов имеют прямую связь.
Мощность тепловыделения электронных узлов не равна потребляемой мощности, но они связаны между собой через коэффициент потерь мощности узла.
Есть множество публикаций о том как выполнить этот расчет, в Интернет есть специальные сайты для этого расчета. Но до сих пор возникают вопросы при его выполнении.
А потому что не только мощность тепловыделения сложно найти у производителя, но и даже мощность потребляемая интересующим нас узлом не всегда известна. Возможно они просто боятся их приводить в связи с тем что их величина не непостоянна в процессе работы и существенно зависит от режима работы. Разница может достигать десять раз и иногда даже больше.
Похоже они не хотят перегружать пользователей «ненужной» информацией. Да и данных для производителей я пока не нашел.
У читываем коэффициент тепловыделения.
Коэффициент полезного действия.
Коэффициента тепловыделения.
Для узлов ПК — чипов, микросхем и других широко известное понятие КПД не подходит, потому что часто невозможно оценить полезную мощность. Для этого лучше использовать коэффициент потерь мощности, который характеризует долю потребляемой узлом мощности переходящей в тепло.
Здесь: P потр — мощность потребляемая узлом от источника питания, P тепл — мощность тепловыделения узла, К т — коэффициент тепловыделения.
Доля потребляемой мощности выводимая за пределы чипа в виде нужной нам информации незначительна, что и позволяет при грубых расчетах приравнять P тепл и P потр.
Мощности тепловыделения современных чипов определяется их загрузкой и характером работы.
Особенностью работы современных чипов процессоров и других микросхем является то что их TDP ( мощность тепловыделения ) производителями получается простым умножением напряжения питания чипа на его ток потребления. В соответствии с изложенными выше причинами это значение можно использовать для расчетов их тепловыделения. Но, как уже говорилось выше, она существенно зависит от режима работы чипа.
Ниже, в таблице 2, приведены ориентировочные значения К т для различных узлов ПК.
К т зависит от режима работы узла или его загрузки.
Системная плата как источник тепловыделения.
Для большинства не секрет, что системная плата обеспечивая работу узлов на ней установленных сама потребляет электроэнергию и выделяет тепло. Тепло выделяют северный и южный мосты чипсета, источники питания узлов компьютера, да и просто расположенные на ней компоненты электронных схем. Причем это тепловыделение тем больше чем производительнее Ваш компьютер. И даже в процессе работы тепловыделение меняется в зависимости от загруженности его узлов.
Наибольшее тепловыделение имеет чип северного моста, который обеспечивает работу процессора с шинами. И часто и работу с модулями память (в некоторых моделях современных процессоров эту функцию выполняют они сами). Поэтому их мощность тепловыделения может доходить от 20 до 30 Вт. Производитель обычно не указывает их тепловыделение, как вообще суммарное тепловыделение системной платы.
Косвенным признаком высокого тепловыделения является наличие инвертора для его питания в непосредственной близости от него и усиленной системы охлаждения (вентилятор, тепловые трубки). Не забывайте, питание и охлаждение должны обеспечивать нормальную работу чипсета при максимальной производительности.
Сейчас на одну фазу такого источника питания приходится до 35 Вт выходной мощности. Фаза источника питания имеет в своем составе пару транзисторов MOSFET, дроссель и один или несколько оксидных конденсаторов.
Современные модули быстродействующей памяти тоже имеют достаточно большое тепловыделение. Косвенным признаком этого является наличие отдельного источника питания и наличие дополнительного теплоотвода (металлических пластин) установленного на чипы памяти. Мощность тепловыделения модулей память зависит от его емкости и рабочей частоты. Она может достигать 10 — 15 Вт на модуль (или 1,5 — 2,5 Ватт на чип память находящийся на модуле в зависимости от производительности). Источник питания памяти рассеивает мощность 2 — 3 Вт на модуль памяти.
Современные процессоры имеют потребляемую мощность до 125 и даже 150 Вт (потребляемый ток доходит до 100 А), поэтому они питаются от отдельного источника питания содержащего до 24 фаз (ветвей) работающих на одну нагрузку. Мощность рассеиваемая источником питания процессора для таких процессоров доходит до 25 — 30 Вт. В документации на процессор часто указывается параметр TDP (thermal design power) характеризующий тепловыделение процессора
На современных системных платах нет дополнительных источников питания для видеокарт. Они располагаются на самих видеокартах поскольку их мощность существенно зависит от режима работы и применяемых графических процессоров. Видеокарты имеющие дополнительные источники питания (инверторы), питаются через дополнительный отвод БП напряжением +12 В.
Элементная база системной платы, как источник тепла.
В связи с ростом количества внешних устройств, растет и количество внешних портов, которые могут использоваться для подключения внешних устройств не имеющих собственных источников питания (например внешние HDD на USB портах). На один USB порт до 0,5 А, а таких портов может быть до 12. Поэтому на системной плате сейчас часто устанавливаются дополнительные источники питания для их обслуживания.
Нельзя забывать что тепло выделяет, в той или иной мере, все радиоэлементы установленные на системной плате. Это специализированные чипы, резисторы, диоды и даже конденсаторы. Почему даже? Потому что считается что на конденсаторах работающих на постоянном токе мощность не выделяется (если не считать незначительной мощности вызванной токами утечки). Но в реальной системной плате нет чистого постоянного тока — источники питания импульсные, нагрузки динамические и всегда присутствуют переменные токи в их цепях. И тогда начинает выделяться тепло мощность которого зависит от качества конденсаторов ( величины ESR) и величины и частоты этих токов (их гармоник). А число фаз инверторного источника питания процессора достигло 24 и нет предпосылок к их снижению на качественных системных платах.
Суммарная мощность тепловыделения системной платы (только ее одной!) может достигать в пике — 100Вт.
Дело в том что сейчас, с ростом мощности потребляемой узлами компьютера (видео карта, процессор, модули памяти, чип сеты северного и южного моста) их питание осуществляется от специальных источников питания расположенных на материнской плате. Эти источники представляют сбой многофазные (от 1 до 12 фаз) инверторы работающие от источника 5 — 12В и питающие заданным током (10 — 100 А) потребители при выходном напряжении 1 — 3В. Все эти источники имеют КПД порядка 72 — 89 % в зависимости от применяемой в них элементной базы. У разных производителей применяются разные методы отвода выделяющегося тепла. От простого отвода тепла на материнскую плату с помощью пайки транзисторов ключей MOSFET на печатный проводник на плате, до специальных охладителей на тепловых трубках с использованием специальных вентиляторов.
Встроенный источник питания представляет собой обычный инвертор, при многофазном включении это несколько (количество соответствует числу фаз) синхронизированных и сфазированных, работающих на одну нагрузку инверторов.
Дело в том что сейчас, с ростом мощности потребляемой узлами компьютера (видео карта, процессор, модули памяти, чип сеты северного и южного моста) их питание осуществляется от специальных источников питания расположенных на материнской плате. Эти источники представляют сбой многофазные (от 1 до 12 фаз) инверторы работающие от источника 5 — 12В и питающие заданным током (10 — 100 А) потребители при выходном напряжении 1 — 3В. Все эти источники имеют КПД порядка 72 — 89 % в зависимости от применяемой в них элементной базы.
Встроенный источник питания представляет собой обычный инвертор, при многофазном включении это несколько (количество соответствует числу фаз) синхронизированных и сфазированных, работающих на одну нагрузку инверторов.
У разных производителей применяются разные методы отвода выделяющегося тепла. От простого отвода тепла на материнскую плату с помощью пайки транзисторов ключей MOSFET на печатный проводник на плате, до специальных охладителей на тепловых трубках с использованием специальных вентиляторов.
Примерный расчет тепловыделения по цепочке питания.
Рассмотрим эту цепочку.
Результатом рассмотрения будет ответ на вопрос: «Какая мощность выделяется на источнике питания устройства расположенного на системной плате?»
В озьмем для примера процессора AMD Phenom™ II X4 3200, который имеет потребляемую мощность в пике (TDP) – 125 Вт. Это, как уже писалось выше, с достаточно высокой точностью его тепловыделение.
Многофазный инвертор от которого питается указанный выше процессор, практически не зависимо от количества фаз, при КПД = 78% (обычно), выделяет тепла 27,5 Вт в пике.
Итого общее тепловыделение в цепи питания процессора AMD Phenom™ II X4 3200 и источника его питания (инвертор) в пике достигает 152,5 Вт.
Доля тепловыделения в БП приходящаяся на этот процессор составит (с учетом КПД БП) более 180 Вт в пике нагрузки процессора.
Для расчета доли мощности (тока) питания приходящегося на данную цепь для БП используется суммарная мощность — 152,5 Вт. Чтобы переводить данную мощность надо знать от каких напряжений питается данная цепь. А это зависит не столько от процессора и блока питания (БП), сколько от конструкции материнской платы. В случае если питание осуществляется от напряжения 12В рассчитывают по суммарной мощности потребляемой в данной цепи, переведя эту мощность в ток и получим, при напряжении цепи 12В, суммарный ток потребляемой от БП для цепи питания процессора равен — 12,7А.
Проверка эффективности системы охлаждения собранного вами компьютера.
Как уже говорилось выше, проверкой правильности выполненных Вами расчетов тепловыделения и выбора конструкции корпуса будет проверка ваших расчетов и эффективности выбранной Вами системы охлаждения.
Проверка заключается в контроле температуры узлов (основных) Вашего компьютера. Она не должна превышать максимальной температуры определенной их изготовителями. И даже иметь некоторый запас (на мой взгляд порядка 20°С). этот запас позволит обеспечить бесперебойную работу Вашего компьютера в критических условиях. Это могут быть запыленные воздушные фильтры, новые более ресурсоемкие приложения которые Вы установили на ПК и даже просто летняя жара.
Заключение.
Как Вы поняли, при современных тепловыделениях узлов, расчет потребляемой Вашим компьютером мощности, при его моддинге и самостоятельной сборке, надо делать всегда. Он нужен для выбора блока питания, одного из важнейших устройств компьютера, и в конечном счете оценки суммарной мощности потребляемой Вашим компьютером.
Полученную мощность потребления можно использовать как максимально возможную мощность тепловыделения, с учетом того что мощность тепловыделения всегда ниже потребляемой мощности.
Если у Вас достаточно опыта для определения круга задач выполняемых Вашим компьютером, загрузки его узлов и оценки их тепловыделения при работе, то Вы можете оценить его тепловыделение с точностью выше, чем та, которую дает расчет по потребляемой мощности.
Но пока невозможно, из-за широкой номенклатуры узлов и их производителей, с высокой точностью рассчитать мощность тепловыделения компьютера. Это возможно только при моделировании конкретного конструктивного решения и широкого комплекса измерений его характеристик, включая режимы тепловыделения и теплообмена. В производственных условиях эта процедура называется комплексом заводских испытаний.
Выходом для модерра или сборщика может быть:
измерение потребляемой мощности,
расчет по потребляемой мощность,
В последнем случае получаем избыточное тепловыделение, соответственно избыточный воздухообмен. Для его оптимизации рекомендую применять электронных регуляторов числа оборотов вентиляторов. Это позволит снять избыточность воздухообмена и снизить уровень шума системы вентиляции.
Применение регуляторов оборотов вентиляторов охлаждения с мониторингом скорости вращения и температур, кроме прямой функции регулирования расхода воздуха через охлаждаемые объекты, позволяет еще и создать мониторинг температур по критическим точкам Вашего компьютера.
И последнее, поскольку обеспечить, в таком широком диапазоне тепловыделения, устойчивую работу систем охлаждения затруднительно, я бы рекомендовал на постоянной основе ввести в конфигурацию Вашего компьютера контроллер мониторинга и управления вентиляторами. Это обеспечит примерно 3х кратную регулировку расхода воздуха через охлаждаемые узлы и мониторинг температур в критических точках.
Измерение мощности, Г.П. Манин, М-Л, Энергия, 1965