как узнать вероятность события
Что такое вероятность и как ее посчитать
Пусть будет некий абстрактный эксперимент в процессе которого может происходить некое событие. Этот эксперимент провели пять раз, и в четырех из них происходило то самое событие. Какие выводы можно сделать из этих 4/5?
Есть формула Бернулли, которая дает ответ, с какой вероятностью происходит 4 из 5 при известной исходной вероятности. Но она не дает ответ, какая была исходная вероятность, если событий получилось 4 из 5. Оставим пока в стороне формулу Бернулли.
Сделаем маленькую простенькую программку, симулирующую процессы вероятностей для такого случая, и на основе результата вычислений построим график.
Код этой программы можно найти здесь, рядом же вспомогательные функции.
Полученный расчет закинул в эксель и сделал график.
Такой вариант графика можно назвать распределением плотности вероятностей значения вероятности. Его площадь равна единице, которая распределена в этом холмике.
Для полноты картины упомяну, что этот график соответствует графику по формуле Бернулли от параметра вероятность и умноженный на N+1 количества экспериментов.
Далее по тексту, там где в статье употребляю дробь вида k/n, то это не деление, это k событий из n экспериментов, чтобы каждый раз не писать k из n.
Далее. Можно увеличить количество экспериментов, и получить более узкую область расположения основных величин значения вероятность, но как бы их не увеличивали, эта область не сократится до нулевой области с точно известной вероятностью.
На графике ниже изображены распределения для величин 4/5, 7/9, 11/14 и 24/30. Чем уже область, тем выше холмик, площадь которого неизменная единица. Эти соотношения выбраны, потому что они все около 0.8, а не потому что именно такие могут возникнут при 0.8 исходной вероятности. Выбраны, чтобы продемонстрировать, какая область возможных значений остается даже при 30 проведенных экспериментах.
Код программы для этого графика здесь.
Из чего следует, что в действительности экспериментальную вероятность абсолютно точно не определить, а можно лишь предположить область возможного расположения таковой величины, с точностью в зависимости от того сколько произвели замеров.
Сколько бы экспериментов не провели, всегда остается вероятность, что исходная вероятность может оказаться и 0.0001 и 0.9999. Для упрощения крайние маловероятные значения отбрасываются. И берется, скажем, например 95% от основной площади графика распределения.
Такая штука называется доверительные интервалы. Каких-либо рекомендаций, сколько именно и почему процентов нужно оставить я не встречал. Для прогноза погоды берут поменьше, для запуска космических шаттлов побольше. Так же обычно не упоминают, какой все же используется доверительный интервал на вероятность событий и используется ли вообще.
В моей программе расчет границ доверительного интервала осуществляется здесь.
Получилось, что вероятность события определяется плотностью вероятностей значения вероятности, и на это еще нужно наложить процент области основных значений, чтобы можно было хоть что-то определенно сказать, какая все же вероятность у исследуемого события.
Теперь, про более реальный эксперимент.
Пусть будет всем надоевшая монетка, подбрасываем эту монетку, и получаем 4 из 5 выпадений решкой — очень реальный случай. В действительности это не совсем то же самое, что описал чуть выше. Чем это отличается от предыдущего эксперимента?
Предыдущий эксперимент описывался из предположения, что вероятность события может быть равнораспределена на интервале от 0 до 1. В программе это задается строкой double probability = get_random_real_0_1();. Но не бывает монеток с вероятностью выпадения, скажем, 0.1 или 0.9 всегда одной стороной.
Если взять тысячу самых разных монет от обычных до самых кривых, и для каждой произвести замер выпадения путем подбрасывания их по тысяче и более раз, то это покажет, что реально они выпадают одной стороной в диапазоне от 0.4 до 0.6 (это числа навскидку, не буду же я выискивать 1000 монет и каждую подбрасывать 1000 раз).
Как этот факт меняет программу для симуляции вероятностей одной конкретной монеты, для которой получили 4 из 5 выпадения решкой?
Допустим, что распределение выпадения одной стороной для монет описывается как приближение к графику нормального распределения взятого с параметрами средняя = 0.5, стандартное отклонение = 0.1. (на графике ниже он изображен черным цветом).
Когда в программе меняю генерацию исходной вероятности с равнораспределенной на распределенную по указанному правилу, то получаю следующие графики:
Код этого варианта здесь.
Видно, что распределения сильно сдвинулись и теперь определяют несколько иную область, в которой высоковероятно возможна искомая вероятность. Поэтому, если известно, какие вероятности бывают для тех вещей, одну из которых хотим измерить, то это может несколько улучшить результат.
В итоге, 4/5 это ни о чем не говорит и даже 50 проведенных экспериментов не очень информативны. Это очень мало информации, чтобы определить, что за вероятность все же лежит в основе эксперимента.
Как упомянул в комментариях jzha, человек существенно знающий математику, данные графики можно построить и путем точных формул. Но цель данной статьи все же как можно наглядней показать как образуется то, что все в повседневной жизни называют вероятностью.
Для того что бы это строить путем точных формул, это нужно рассмотреть имеющиеся в наличии данные по распределению вероятностей всех монет через аппроксимацию бета распределением, и путем сопряжения распределений выводить уже расчеты. Такая схема это существенный объем по объяснениям, как это сделать, и если я это здесь буду описывать, то это получится скорее статья по математическим расчетам, а не про бытовые вероятности.
Как получить в формулах описанный частный случай с монетой, смотрите комментарии от jzha.
Теория вероятностей, формулы и примеры
Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!
Основные понятия
Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.
Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.
Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».
Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.
Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.
Ну, скажем, смотрим на тучи и понимаем, что дождь — вполне себе вероятное событие. А если светит яркое солнце, то дождь — маловероятное или невероятное событие.
Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:
Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.
Формулы по теории вероятности
Теория вероятности изучает события и их вероятности. Если событие сложное, то его можно разбить на простые составные части — так легче и быстрее найти их вероятности. Рассмотрим основные формулы теории вероятности.
Случайные события. Основные формулы комбинаторики
Классическое определение вероятности
Вероятностью события A в некотором испытании называют отношение:
P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A
Таким образом, вероятность любого события удовлетворяет двойному неравенству:
Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?
Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:
Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.
Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?
Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).
Геометрическое определение вероятности
Геометрическая вероятность события А определяется отношением:
P(A)= m(A)/m(G), где m(G) и m(A) — геометрические меры (длины, площади или объемы) всего пространства элементарных исходов G и события А соответственно
Чаще всего, в одномерном случае речь идет о длинах отрезков, в двумерном — о площадях фигур, а в трехмерном — об объемах тел.
Пример. Какова вероятность встречи с другом, если вы договорились встретиться в парке в промежутке с 12.00 до 13.00 и ждете друг друга 5 минут?
У нас есть отличное онлайн обучение по математике для учеников с 1 по 11 классы, записывайся на пробное занятие!
Сложение и умножение вероятностей
Теорема о сложении вероятностей звучит так: вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:
P(A + B) = P(A) + P(B)
Эта теорема справедлива для любого числа несовместных событий:
Если случайные события A1, A2. An образуют полную группу несовместных событий, то справедливо равенство:
Произведением событий А и В называется событие АВ, которое наступает тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.
Вторая теорема о сложении вероятностей: вероятность суммы совместных событий вычисляется по формуле:
P(A + B) = P(A) + P(B) − P(AB)
События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Теорема об умножении вероятностей: вероятность произведения независимых событий А и В вычисляется по формуле:
P(AB) = P(A) * P(B)
Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8.
Найдем вероятности того, что формула содержится:
А — формула содержится в первом справочнике;
В — формула содержится во втором справочнике;
С — формула содержится в третьем справочнике.
Воспользуемся теоремами сложения и умножения вероятностей.
Ответ: 1 — 0,188; 2 — 0,452; 3 — 0,336.
Формула полной вероятности и формула Байеса
По теореме умножения вероятностей:
Аналогично, для остальных гипотез:
Эта формула называется формулой Байеса. Вероятности гипотез называются апостериорными вероятностями, тогда как — априорными вероятностями.
Пример. Одного из трех стрелков вызывают на линию огня, он производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5; для третьего — 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.
Формула Бернулли
При решении вероятностных задач часто бывает, что одно и тоже испытание повторяется многократно, и исход каждого испытания независит от исходов других. Такой эксперимент называют схемой повторных независимых испытаний или схемой Бернулли.
Примеры повторных испытаний:
Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы. А вероятность появления события А в каждом случае постоянна и не изменяется от испытания к испытанию.
Биномиальное распределение — распределение числа успехов (появлений события).
Пример. Среди видео, которые снимает блогер, бывает в среднем 4% некачественных: то свет плохой, то звук пропал, то ракурс не самый удачный. Найдем вероятность того, что среди 30 видео два будут нестандартными.
Опыт заключается в проверке каждого из 30 видео на качество. Событие А — это какая-то неудача (свет, ракурс, звук), его вероятность p = 0,04, тогда q = 0,96. Отсюда по формуле Бернулли можно найти ответ:
Ответ: вероятность плохого видео приблизительно 0,202. Блогер молодец🙂
Наивероятнейшее число успехов
Биномиальное распределение ( по схеме Бернулли) помогает узнать, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов k (появлений события) выглядит так:
Пример. В очень большом секретном чатике сидит 730 человек. Вероятность того, что день рождения наугад взятого участника чата приходится на определенный день года — равна 1/365 для каждого из 365 дней. Найдем наиболее вероятное число счастливчиков, которые родились 1 января.
Формула Пуассона
При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно. Например, 0.97 999 вычислить весьма затруднительно.
В этом случае для вычисления вероятности того, что в n испытаниях событие произойдет k раз, используют формулу Пуассона:
Здесь λ = np обозначает среднее число появлений события в n испытаниях.
Эта формула дает удовлетворительное приближение для p ≤ 0,1 и np ≤10.
События, для которых применима формула Пуассона, называют редкими, так как вероятность, что они произойдут — очень мала (обычно порядка 0,001-0,0001).
При больших np рекомендуют применять формулы Лапласа, которую рассмотрим чуть позже.
Пример. В айфоне 1000 разных элементов, которые работают независимо друг от друга. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.
P1000(3) = λ 3 /3! * e −λ = 2 3 /3! * e −2 ≈ 0,18.
Ответ: ориентировочно 0,18.
Теоремы Муавра-Лапласа
Кроме того, пусть Pn(k1;k2) — вероятность того, что число появлений события А находится между k1 и k2.
Локальная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то
Интегральная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то
Функции Гаусса и Лапласа обладают свойствами, которые пригодятся, чтобы правильно пользоваться таблицей значений этих функций:
Теоремы Лапласа дают удовлетворительное приближение при npq ≥ 9. Причем чем ближе значения q, p к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность по сравнению с исходной формулой Бернулли.
Теория вероятностей
Основы теории вероятностей
В этой статье мы расскажем кратко о том, что такое вероятность события. Дадим определение вероятности, введем понятия зависимых и независимых, совместных и несовместных событий. Объясним, что такое сумма событий и произведение событий.
Больше задач – в статье «Задание 2 Профильного ЕГЭ по математике. Теория вероятностей».
Случайным называется событие, которое невозможно точно предсказать заранее. Оно может либо произойти, либо нет. Теория вероятностей изучает случайные события и их закономерности, а также случайные величины и действия над ними.
Благоприятным мы называем исход, способствующий наступлению данного события.
Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.
Очевидно, что вероятность – величина положительная и не может быть больше единицы.
Например, перед экзаменом вы выучили 3 билета из 20. Вероятность вытянуть счастливый билет равна
Вот две простых задачи из вариантов ЕГЭ, где применяется определение вероятности:
1. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир Иванов высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру Иванову достанется удобное место, если всего в самолёте 300 мест.
В самолете 21+18=30 мест, удобных для Иванова. Всего в самолете 400 мест. Поэтому вероятность того, что пассажир Иванов получит удобное место, равна 30 : 300 = 0,1.
Просто применили определение вероятности.
2. В группе туристов 32 человека. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист К. полетит пятым рейсом вертолёта.
Каждый рейс, в том числе и пятый, перевозит 4 человек из 32. Вероятность полететь пятым рейсом:
События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.
Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.
Вероятность суммы несовместных событий равна сумме их вероятностей.
Вы бросаете игральную кость. Вероятность выпадения «тройки» равна Вероятность выпадения «шестерки» также равна
Вероятность выпадения числа, которое делится на 3,
Произведение двух событий – термин, означающий, что произошло и одно, и другое событие.
События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.
Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.
3. Говорят, что в старину каждый десятый на Руси был Иван, а каждый двадцатый Петр. Если это верно, то кого было больше: Иванов Петровичей или Петров Ивановичей?
Можно по-разному решать эту задачу, и вероятностный подход здесь тоже применим. Посчитаем вероятности двух событий
Событие А. Случайно выбранного мужчину зовут Иван Петрович
Событие В. Мужчину зовут Петр Иванович.
Вероятность быть Иваном Петровичем для жившего в старину россиянина равна Мы перемножили вероятности того, что наш древнерусский житель – Иван и что его отца зовут Петр.
А вероятность оказаться Петром Ивановичем точно такая же:
4. (ЕГЭ) Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с ве-роятностью 0,5. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,32. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
Шахматист А. играет две партии, одну – белыми фигурами, другую – черными. События «выиграть белыми» и «выиграть черными фигурами» независимы. Вероятность того, что шахматист А. выиграет оба раза, равна произведению вероятностей выигрышей в каждой партии: 0,5 · 0,32 = 0,16.
5. (ЕГЭ) В классе 26 человек, среди них два друга — Андрей и Сергей. Класс случайным образом разбивают на 2 группы по 13 человек. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.
Следующую задачу можно решить методами комбинаторики – например, с помощью формулы Бернулли. Однако в обычной школе не изучают комбинаторику, и тем не менее эта задача появилась в сборниках для подготовки к ЕГЭ.
6. Монету бросают 10 раз. Во сколько раз событие «Орел выпадет ровно 8 раз» более вероятно, чем событие «Орел выпадет ровно 9 раз»?
По определению, вероятность равна отношению числа благоприятных исходов к общему числу исходов.
Рассмотрим случай, когда орел выпадет ровно 9 раз из 10 бросков монеты. Это значит, что решка выпала ровно 1 раз.
Это могло произойти при первом броске, при втором, при третьем… и, наконец, при десятом, всего 10 благоприятных исходов. Вероятность выпадения решки ровно 1 раз из 10 бросков
Теперь случай, когда орел выпал ровно 8 раз из 10 бросков монеты. Значит, решка выпала ровно 2 раза.
Пронумеруем броски: 1,2,3…10.
Решка могла выпасть в первый и во второй раз. Обозначим эту комбинацию 12.
Могла также выпасть в первый и третий раз, в первый и четвертый… Эти комбинации обозначаем как 13, 14…
Пронумеруем таким образом все благоприятные исходы.
12, 13, 14, 15, 16, 17, 18, 19, 1 10
23, 24, 25, 26, 27, 28, 29, 2 10
34, 35, 36, 37, 38, 39, 3 10
45, 46, 47, 48, 49, 4 10
9 10
Количество благоприятных исходов равно 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45.
Разберем какую-нибудь типовую задачу ЕГЭ по теме «Теория вероятностей». Такую, в которой мы рисуем «дерево» возможных исходов.
7. (ЕГЭ) Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Изобразим все возможные исходы.
По условию, купленное в магазине стекло для автомобильной фары оказалось бракованным. Как это могло получиться?
Стекло сделано либо на первой фабрике, либо на второй. Эти события несовместны.
Вероятность того, что стекло с первой фабрики, равна 0,45.
Вероятность того, что стекло сделано на второй фабрике, равна 0,55.
Первая фабрика выпускает 3% бракованных стекол. Значит, с вероятностью 0,03 стекло, произведенное на первой фабрике, бракованное.
Вторая фабрика выпускает 1% бракованных стекол. Значит, с вероятностью 0,01 сделанное на ней стекло бракованное.
Покупатель купил бракованное стекло. Оно могло быть сделано на первой фабрике и оказалось бракованным. Это означает одновременное наступление, или произведение, двух независимых случайных событий – «стекло сделано на первой фабрике» и «стекло бракованное». Вероятность произведения этих двух событий равна
Или другой случай. Стекло могло быть со второй фабрики и также бракованное. Вероятность одновременного наступления этих двух событий равна События «стекло с первой фабрики» и «стекло со второй фабрики» несовместны – они не могут случиться одновременно.
Вероятность суммы несовместных событий равна сумме вероятностей.
Значит, вероятность купить бракованное стекло равна:
Следующая задача будет интересна и старшеклассникам, и студентам. В самом деле – как быть, если вы пришли на экзамен, выучив всего 20 билетов из 30? Идти отвечать первым? Или вторым? Или предпоследним? В каком случае вероятность вытянуть билет, который ты выучил, будет наибольшей?
8. Экзамен проходит по следующей схеме: если некоторый билет уже был вытянут, то после ответа экзаменатор откладывает его в сторону. Студент выучил 20 билетов из 30. Когда ему выгоднее идти, первым или вторым, чтобы вероятность вынуть выученный билет была больше?
Назовем билеты, которые студент выучил, «счастливыми».
Если студент пошел отвечать первым, вероятность вытянуть «счастливый» билет равна
Если идти отвечать вторым, возможны два случая:
1) Первый билет, который вытянул кто-то другой, был «счастливым», и тогда «счастливых» билетов теперь 19.
2) Первый билет не был «счастливым», и «счастливых» билетов так и осталось 20.
Нарисуем схему возможных исходов, как всегда делаем в подобных задачах:
Вот наш студент идет отвечать вторым. Вероятность вытянуть «счастливый» билет равна Удивительный ответ! Та же самая вероятность! Значит, неважно, первым или вторым идти отвечать, если ты выучил 20 билетов из 30.
Конечно, это были самые простые задачи по теории вероятностей. Такие, которые встречаются на ЕГЭ по математике.