Астрономия 10 класс что изучает астрономия

Программа по астрономии 10 класс

Протокол № 1 на заседании ШМО

от « » августа 2019 г.

Зам. директора по УВР МБОУ СОШ№4

протокол от 27 августа 2019г.№ 1

Введено приказом от 29.08.2019 г. №313

Директор «МБОУ СОШ №4»

по астрономии (базовый уровень)

Хуснуллиной Анжелы Айдаровны ,

МБОУ «СОШ №4 г. Лениногорска» МО «ЛМР» РТ

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

— смысл физических величин: парсек, световой год, астрономическая единица, звездная величина;

— смысл физического закона Хаббла;

— основные этапы освоения космического пространства;

— гипотезы происхождения Солнечной системы;

— основные характеристики и строение Солнца, солнечной атмосферы;

— размеры Галактики, положение и период обращения Солнца относительно центра Галактики;

— приводить примеры: роли астрономии в развитии цивилизации, использования методов исследований в астрономии, различных диапазонов электромагнитных излучений для получения информации об объектах Вселенной, получения астрономической информации с помощью космических аппаратов и спектрального анализа, влияния солнечной активности на Землю;

— описывать и объяснять: различия календарей, условия наступления солнечных и лунных затмений, фазы Луны, суточные движения светил, причины возникновения приливов и отливов; принцип действия оптического телескопа, взаимосвязь физико-химических характеристик звезд с использованием диаграммы «цвет-светимость», физические причины, определяющие равновесие звезд, источник энергии звезд и происхождение химических элементов, красное смещение с помощью эффекта Доплера;

— характеризовать особенности методов познания астрономии, основные элементы и свойства планет Солнечной системы, методы определения расстояний и линейных размеров небесных тел, возможные пути эволюции звезд различной массы;

— находить на небе основные созвездия Северного полушария, в том числе: Большая Медведица, Малая Медведица, Волопас, Лебедь, Кассиопея, Орион; самые яркие звезды, в том числе: Полярная звезда, Арктур, Вега, Капелла, Сириус, Бетельгейзе;

— использовать компьютерные приложения для определения положения Солнца, Луны и звезд на любую дату и время суток для данного населенного пункта;

— использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: понимания взаимосвязи астрономии с другими науками, в основе которых лежат знания по астрономии, отделение ее от лженаук; оценивания информации, содержащейся в сообщениях СМИ, Интернете, научно-популярных статьях

10 класс (35 ч, 1 ч в неделю)

Что изучает астрономия. Наблюдения — основа астрономии (2 ч)

Астрономия, ее связь с другими науками. Структура и масштабы Вселенной. Особенности астрономических мето-

дов исследования. Телескопы и радиотелескопы. Всеволновая астрономия.

Практические основы астрономии (5 ч)

Звезды и созвездия. Звездные карты, глобусы и атласы. Видимое движение звезд на различных географических

широтах. Кульминация светил. Видимое годичное движение Солнца. Эклиптика. Движение и фазы Луны. Затмения Солнца и Луны. Время и календарь.

Строение Солнечной системы (7 ч)

Развитие представлений о строении мира. Геоцентрическая система мира. Становление гелиоцентрической

системы мира. Конфигурации планет и условия их видимости. Синодический и сидерический (звездный) периоды обращения планет. Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. Движение небесных тел под действием сил тяготения. Определение массы небесных тел. Движение искусственных спутников Земли и космических аппаратов в Солнечной системе.

Природа тел Солнечной системы (8 ч)

Солнечная система как комплекс тел, имеющих общее происхождение. Земля и Луна — двойная планета. Ис-

следования Луны космическими аппаратами. Пилотируемые полеты на Луну. Планеты земной группы. Природа

Меркурия, Венеры и Марса. Планеты-гиганты, их спутники и кольца. Малые тела Солнечной системы: астероиды, планеты-карлики, кометы, метеороиды. Метеоры, болиды и метеориты.

Солнце и звезды (6 ч)

Излучение и температура Солнца. Состав и строение Солнца. Источник его энергии. Атмосфера Солнца. Солнечная активность и ее влияние на Землю. Звезды — далекие солнца. Годичный параллакс и расстояния до звезд. Светимость, спектр, цвет и температура различных классов звезд. Диаграмма «спектр—светимость». Массы и размеры звезд. Модели звезд. Переменные и нестационарные звезды. Цефеиды — маяки Вселенной. Эволюция звезд различной массы.

Строение и эволюция Вселенной (5 ч)

Жизнь и разум во Вселенной (2 ч)

Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности космонавтики и радиоастрономии для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.

10 класс ( 35 часов, 1 час в неделю)

Источник

Астрономия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Что такое астрономия

Сам термин «астрономия» появился благодаря таким ученым, как Пифагор и Гиппарх еще в III-II в. до н.э. В современном мире выделят несколько разделов науки астрономии.

Астрономия изучает как Вселенную в целом, так и ее объекты по отдельности. Это звезды, кометы, планеты, созвездия, галактики и т.д. Кроме этого ученые-астрономы посвящают свое время изучению черных дыр, туманности, системе небесных координат.

Связь астрономии с другими науками

Прослеживается тесная связь астрономи с другими науками. Математика, физика, химия, география, биология, механика, радиоэлектроника – это только часть наук, без которых не обходятся современные ученые-астрономы. Знания, полученные в процессе изучения этих предметов, обязательно облегчат и овладение астрономией как предметом.

Для осуществления астрономических исследований, расчета координат, траекторий небесных тел, необходимо владеть математическими, географическими знаниями. Знания химии нужны для определения химического состава небесных светил, объяснения химических процессов, происходящих в космическом пространстве. Не обойтись без физики, которая поможет разобраться в физических процессах, которые осуществляются на звездах, а также изучить форму небесных светил. Исследовать значение и происхождение названий созвездий, звезд, планет поможет лингвистика. Научиться пользоваться телескопом, изучить его строение и производить исследования в космосе поможет радиоэлектроника, механика. Как влияет солнечный свет на все живое на планете, объясняет биология. История перенесет нас в далекое прошлое и поможет разобраться в происхождении небесных тел, познакомит с древними астрономами.

Вселенная и ее масштабы

Современная наука доказала, что Вселенная имеет свои границы. Ученые измеряют ее размер световыми годами и насчитывают их около 45.7 миллиардов. Если представить, что один световой год равен 10 триллионам километров, то попробуйте представить себе масштабы Вселенной.

Какие тела заполняют Вселенную

Вселенную наполняют различные небесные тела. Их еще называют космическими телами Вселенной. Среди них выделяют:

Размеры небесных тел вселенского пространства могут быть как микроскопическими, так и гигантскими. Метеориты, астероиды и кометы относятся к малым телам Вселенной. Ученые продолжают изучать небесные тела и открыли самое большое тело во Вселенной. Им стала звезда UY Scuti. Ее радиус в 1700 раз превышает радиус Солнца.

Познакомимся поближе с небесными телами и определим их характеристики.

Астероиды – это глыбы из камня, которые образуют астероидный пояс. Он находится между орбитами Юпитера и Марса. Форма у астероидов неправильная, диаметр тел начинается от 30 метров и может достигать десятки километров. На данный момент ученые открыли более 97 853 768 этих малых космических тел Вселенной. Движение астероидов происходит по орбите вокруг Солнца.

Кометы – состоят из твердого ядра. Приближаясь к Солнцу, ядро начинает нагреваться и происходит испарение веществ, из которых оно состоит. В результате этого происходит образование газовой оболочки, а потом возникает хвост. По мере удаления от Солнца хвост и оболочка исчезают. Изредка кометы можно наблюдать невооруженным взглядом. Последней кометой, которая за последние 7 лет четко просматривалась на ночном небе, была C/2020 F3 NEOWISE. Это произошло в июле 2020 года. В основном же эти небесные тела ученые изучают с помощью телескопа.

Метеороиды – твердые небесные тела, размер которых больше атома, но меньше астероида. Они могут быть как первичными объектами, так и представлять собой фрагменты космических объектов, причем не только астероидов. Небесные тела, попавшие в атмосферу, называют метеорами. К ним относят осколки комет или астероидов.

Часть метеороида, достигшая земной поверхности, принято называть метеоритом. Другими словами, метеорит – это любое тело космического происхождения, упавшее на поверхность другого небесного объекта.

После падения метеориты оставляют след – кратер. На сегодняшний день крупнейший кратер Уилкса имеет диаметр 500 км.

Кратер от метеорита

Звезды – свет и тепло исходит от этих небесных тел. Они представляют собой массивные шары, состоящие из газа. Ближайшая звезда к Земле – Солнце. На ночном небе при отсутствии облаков можно наблюдать самые разные звезды. Их значение оценили еще наши предки. Эти «мерцающие точки» помогали ориентироваться в пространстве, о них часто писали в мифах и религиозных историях. Еще в древности, люди, не имеющие никакой техники, видели в звездах образы самых различных существ. Так начали выделять созвездия. На сегодняшний день их насчитывается 88, 12 из которых являются зодиакальными.

Планеты – достаточно большие шарообразные объекты, вращающиеся вокруг Солнца по определенной оси и не являющиеся спутником другого космического тела. В Солнечной системе 8 планет:

Телескопы: наземные и космические

Специальный прибор, который используют для наблюдения за космическими объектами, называется телескоп. Главная его задача – собрать как можно больше света от небесного тела и увеличить угол зрения, под которым это небесное тело можно изучать. Улавливаемый прибором свет пропорционален его объективу. Следовательно, чем больше объектив у телескопа, тем мельче объекты он может уловить.

Первый телескоп появился благодаря ученому Галилео Галилею в 1609 году. Принцип его работы практически ничем не отличался от уже имеющихся на то время подзорных труб. Для своего прибора ученый использовал более мощные линзы, которые позволили увеличить изображение в 20 раз. Телескоп помог сделать первые важные открытия в космосе. Сейчас он хранится в одном из музеев Флоренции.

С помощью наземных телескопов можно наблюдать за Солнцем, планетами, спутниками. Но вот изучить детально звезды не получится. Даже в самый мощный прибор они видны как маленькие мерцающие точки.

Более детально познакомиться с космосом и Вселенной позволяют космические телескопы, расположившиеся на орбите. Это настоящие гиганты, они помогают даже в изучении истории Вселенной. Первый космический телескоп подняли в воздух в августе 1957 года. На высоте 25 км он сделал съемку Солнца в высоком расширении.

Современные космические и наземные телескопы оснащены компьютерными программами. Они передают картинку на монитор, что позволяет увидеть изображение в таком виде, в каком оно представлено в действительности, без каких-либо искажений.

Где находятся самые крупные оптические телескопы

Как правило, телескопы устанавливают в отдаленных местах от городской суеты. Для этого подходят горные местности, либо бескрайние пустыни. К числу крупнейших телескопов мира относят:

Самый крупный телескоп России БТА (Большой Телескоп Альт-Азимутальный) расположен в горах на высоте 2070 м в Карачаево-Черкесии. Диаметр его зеркала составляет 6 метров.

Всеволновая астрономия

Первые ученые-астрономы для изучения космического пространства использовали исключительно оптические телескопы. Следовательно, изучить и описать они могли лишь то, что непосредственно улавливал их взор. Сегодня же астрономия достигла значительных высот, ведь ученые могут вести свои наблюдения на различных длинах волн. Новые знания и технологии способствовали выделению совершенно новых дисциплин, таких как гамма-астрономия, радиоастрономия и рентгеновская астрономия.

Каждый космический объект излучает ряд волн, невидимых для человеческого глаза. Но их можно измерить специальными приборами. Необходимость таких измерений неоценимо важна. Например, гамма- или рентгеновское излучение, которое приходит из космоса на Землю, рассказывает о грандиозных процессах, происходящих в самых глубинках Вселенной. Из-за гигантских расстояний человек не может наглядно изучить все космические объекты. Все знания человечества о космосе базируются на излучении, которое исходит от небесных тел. Так удалось определить расстояние между объектами во Вселенной, их состав, возраст, размер и т.д.

Понятие «всеволновая астрономия» означает, что современные наблюдения за космическими телами ведутся во всех известных диапазонах электромагнитного излучения.

Как развивалась отечественная космонавтика

История развития отечественной космонавтики берет свое начало с середины ХХ столетия. В 1946 году основали Опытно-конструкторское бюро №1, его задачей стала разработка спутников, ракет-носителей и баллистических ракет. Спустя 10 лет силами бюро была спроектирована первая ракета-носитель, с помощью которой в космос был запущен первый искусственный спутник планеты Земля.

После запуска искусственного спутника развитие космонавтики приобрело совершенно другие темпы. Спустя некоторое время в космическое пространство был запущен еще один спутник, но на его борту уже находилось живое существо – собака по имени Лайка.

Запуски межпланетных станций позволили заняться исследованием Луны, а уже в 1959 году космический аппарат достиг поверхности спутника Земли. В это время Советский Союз получил снимки обратной стороны Луны, что позволило ученым присвоить названия практически всем основным формам рельефа на спутнике.

Первая фотография обратной стороны Луны

Важным событием в развитии отечественной космонавтики стал полет первого человека в космос. Состоялось это 12 апреля 1961 года на корабле «Восток» пилотируемым Юрием Гагариным. В 1965 году человек впервые вышел в открытый космос.

До 1991 года отечественная космонавтика радовала множеством открытий и достижений:

Запуск первого искусственного спутника Земли

4 октября 1957 года стал знаменательным для всей мировой космонавтики. В этот день был осуществлен запуск первого в мире искусственного спутника Земли. Это событие стало началом изучения космического пространства и открыло новые возможности в развитии не только отечественной, но и мировой космонавтики.

Космодром Байконур, находящийся в Казахстане, стал площадкой для первого запуска первого искусственного спутника Земли. Для этого использовалась ракета-носитель Р-7. Спутник пребывал в космическом пространстве 92 дня, 1440 раз облетел вокруг Земли, что позволило ученым впервые произвести изучение верхних слоев ионосферы. Также была получена достаточно важная информация о работе аппаратуры в космических условиях и произведена проверка расчетов.

Первый искусственный спутник Земли

Современная космонавтика и ее достижения

Огромный прорыв сделала современная космонавтика в своем развитии. Сегодня о космосе говорится как о реальном, а не как о чем-то сказочно далеком. Запуск современного космического корабля, полеты в космическое пространство стали хоть и дорогостоящими, но обычными явлениями в жизни российского государства.

Не вызывает ни у кого удивления космический туризм, когда за определенную плату можно полетать на космическом корабле. На высоком уровне проходят космические исследования. Современные ученые работают над созданием солнечных электростанций, разрабатывают технологи влияния на климат Земли.

С 2016 года начал свою работу космодром «Восточный» в Амурской области. Это позволило России совершать запуски космических кораблей со своей территории и не зависеть от других стран.

В недалеком будущем в планах запуск пилотируемых кораблей на поверхность Луны, беспилотных космических аппаратов для исследований космического пространства, реализация программы «Морской старт».

Приоритетной задачей для России стало дальнейшее развитие отечественной космонавтики, изучение возможностей современной космической отрасли и выведение ее на передовые мировые рубежи.

Источник

Урок 1. Что изучает астрономия

Цель урока: знакомство учащихся с особенностями изучения нового предмета – астрономия.

· сформировать представление о предмете астрономии, истории астрономии, структуре и масштабах Вселенной;

· познакомить учащихся с задачами и методами астрономических исследований;

· создать условия для развития мышления (учить анализировать, выделять главное, понимать тексты, объяснять и определять понятия, обобщать и систематизировать, приводить примеры);

· создать условия для развития познавательного интереса и элементов творческой деятельности;

· воспитывать положительную мотивацию к изучению астрономии; культуру умственного труда;

Методы обучения: объяснительно-иллюстративные, эвристические.

Форма организации учебной деятельности: фронтальная, индивидуальная.

Литература: § 1 – 2, Воронцов-Вельяминов, Б.А. Астрономия. 11 класс

Технические средства обучения: компьютер с выходом в Интернет

§ «219 секунд, после которых Ваши проблемы покажутся ничтожными»

§ Телескопы. Что такое телескопы. Какие бывают телескопы. АСТРОНОМИЯ. Лекции Планетарий. https://www.youtube.com/watch?v=5zBR_NqDOVo

§ Видео. Как сделать телескоп своими руками. Самодельный телескоп Галилео Галилея (7:19) https://www.youtube.com/watch?v=10EhpiAMMh0

С помощью лекционного материала и видеороликов изучите данную тему. Составьте самостоятельно конспект.

Для проверки усвоения изученного материала, устно ответьте на вопросы, проверьте себя.

План изучения материала:

1. Что изучает астрономия. Её значение и связь с другими науками.

2. Структура и масштабы Вселенной.

3. Наблюдения – основа астрономии.

1. Что изучает астрономия. Её значение и связь с другими науками.

Астрономия является одной из древнейших наук, истоки которой относятся к каменному веку (VI—III тысячелетия до н. э.).

Астрономия изучает движение, строение, происхождение и развитие небесных тел и их систем.

Это слово происходит от двух греческих слов:

astron — «звезда, светило» и nomos — «закон».

Человека всегда интересовал вопрос о том, как устроен мир. У большинства народов ещё на заре цивилизации были сложены особые мифы, повествующие о том, как из первоначального хаоса постепенно возникает космос (порядок), появляется всё, что окружает человека: небо и земля, горы, моря и реки, растения и животные, а также сам человек.

На протяжении тысячелетий шло постепенное накопление сведений о явлениях, которые происходили на небе.

Оказалось, что периодическим изменениям в земной природе сопутствуют изменения вида звёздного неба и видимого движения Солнца. Высчитать момент наступления определённого времени года было необходимо для того, чтобы в срок провести те или иные сельскохозяйственные работы: посев, полив, уборку урожая.

Но это можно было сделать лишь при использовании календаря, составленного по многолетним наблюдениям положения и движения Солнца и Луны. Так, необходимость регулярных наблюдений за небесными светилами была обусловлена практическими потребностями счёта времени.

Когда в Древней Греции (VI в. до н. э.) началось бурное развитие философии как науки о природе, астрономические знания стали неотъемлемой частью человеческой культуры.

Астрономия — единственная наука, которая получила свою музу-покровительницу — Уранию.

С самых древних времён развитие астрономии и математики было тесно связано между собой.

Вы знаете, что в переводе с греческого название одного из разделов математики — геометрии — означает «землемерие». Первые измерения радиуса земного шара были проведены ещё в III в. до н. э. на основе астрономических наблюдений за высотой Солнца в полдень Эратосфеном.

Необычное, но ставшее привычным деление окружности на 360° имеет астрономическое происхождение: оно возникло тогда, когда считалось, что продолжительность года равна 360 суткам, а Солнце в своём движении вокруг Земли каждые сутки делает один шаг — градус.

Астрономические наблюдения издавна позволяли людям ориентироваться в незнакомой местности и на море.

Развитие астрономических методов определения координат в XV— XVII вв. в немалой степени было обусловлено развитием мореплавания и поисками новых торговых путей.

Составление географических карт, уточнение формы и размеров Земли на долгое время стало одной из главных задач, которые решала практическая астрономия.

Искусство прокладывать путь по наблюдениям за небесными светилами, получившее название навигация, сначала использовалось в мореходном деле, затем в авиации, а теперь и в космонавтике.

Вопрос о положении Земли во Вселенной, о том, неподвижна она или движется вокруг Солнца, в XVI—XVII вв. приобрёл важное значение, как для астрономии, так и для миропонимания. Так появилось геоцентрическое учение Птолемея.

Гелиоцентрическое учение Николая Коперника явилось не только важным шагом в решении этой научной проблемы, но и способствовало изменению стиля научного мышления, открыв новый путь к пониманию происходящих явлений.

Астрономические наблюдения за движением небесных тел и необходимость заранее вычислять их расположение сыграли важную роль в развитии очень важного для практической деятельности человека раздела физики — механики.

Выросшие из единой когда-то науки о природе — философии — астрономия, математика и физика никогда не теряли тесной связи между собой. Взаимосвязь этих наук нашла непосредственное отражение в деятельности многих учёных.

Далеко не случайно, например, что Галилео Галилей и Исаак Ньютон известны своими работами и по физике, и по астрономии.

Сформулированный Ньютоном в конце XVII в. закон всемирного тяготения открыл возможность применения этих математических методов для изучения движения планет и других тел Солнечной системы.

Постоянное совершенствование способов расчёта на протяжении XVIII в. вывело эту часть астрономии — небесную механику — на первый план среди других наук той эпохи.

В XX в. достижения астрономии снова, как и во времена Коперника, привели к серьёзным изменениям в научной картине мира, к становлению представлений об эволюции Вселенной. Эти представления составляют основу современной космологии.

Оказалось, что Вселенная, в которой мы сегодня живём, несколько миллиардов лет тому назад была совершенно иной — в ней не существовало ни галактик, ни звёзд, ни планет.

Для того чтобы объяснить процессы, происходившие на начальной стадии ее развития, понадобился весь арсенал современной теоретической физики, включая теорию относительности, атомную физику, квантовую физику и физику элементарных частиц.

События, которые произошли в науке за последние десятилетия, показали, что неразрывная связь, существующая между астрономией и физикой, позволяет успешно решать многие проблемы, волнующие человечество.

Далеко не случайно, что в первые годы XXI в. три Нобелевских премии по физике были присуждены учёным за исследования по астрофизике и космологии.

В астрономии, как и во многих других науках, всё больше используются компьютеры для решения задач самого разного уровня — от управления телескопами до исследования процессов эволюции планет, звёзд и галактик.

Развитие ракетной техники позволило человечеству выйти в космическое пространство.

С одной стороны, это существенно расширило возможности исследования всех объектов, находящихся за пределами Земли, и привело к новому подъёму в развитии небесной механики, которая успешно осуществляет расчёты орбит автоматических и пилотируемых космических аппаратов различного назначения. С другой стороны, методы дистанционного исследования, пришедшие из астрофизики, ныне широко применяются при изучении нашей планеты с искусственных спутников и орбитальных станций. Результаты исследований тел Солнечной системы позволяют лучше понять глобальные, в том числе эволюционные, процессы, происходящие на Земле. Вступив в космическую эру своего существования и готовясь к полётам на другие планеты, человечество не вправе забывать о Земле и должно в полной мере осознать необходимость сохранения ее уникальной природы.

2. Структура и масштабы Вселенной.

От наиболее удаленных галактик свет доходит до Земли за 10 млрд лет. Значительная часть вещества звезд и галактик находится в таких условиях, создать которые в земных лабораториях невозможно. Все космическое пространство заполнено электромагнитным излучением, гравитационными и магнитными полями, между звездами в галактиках и между галактиками находится очень разреженное вещество в виде газа, пыли, отдельных молекул, атомов и ионов, атомных ядер и элементарных частиц.

3. Наблюдения – основа астрономии

Наблюдения — основной источник информации в астрономии.

Эта первая особенность астрономии отличает её от других естественных наук (например, физики или химии), где значительную роль играют опыты и эксперименты, планируемые в лабораториях. Возможности проведения экспериментов за пределами Земли появились лишь благодаря космонавтике. Но и в этих случаях речь идёт о проведении исследований небольшого масштаба, таких, например, как изучение химического состава лунных или марсианских пород. Трудно представить себе эксперименты над планетой в целом, звездой или галактикой.

Вторая особенность объясняется значительной продолжительностью изучаемых в астрономии явлений (от сотен до миллионов и миллиардов лет). Поэтому непосредственно наблюдать многие из происходящих явлений невозможно. Когда явления происходят особенно медленно, приходится проводить наблюдения многих родственных между собой объектов, например звёзд. Основные сведения об эволюции звёзд получены именно таким способом. Более подробно об этом будет рассказано далее.

Третья особенность астрономии обусловлена необходимостью указать положение небесных тел в пространстве (их координаты) и невозможностью сразу указать, какое из них находится ближе, а какое дальше от нас. На первый взгляд, все наблюдаемые светила кажутся нам одинаково далёкими.

Для наблюдения за небесными телами использую телескопы. В зависимости от длины волны наблюдаемого излучения телескопы подразделяются на радиотелескопы, телескопы для визуального наблюдения, инфракрасные, ультрафиолетовые, рентгеновские, гамма-телескопы.

В зависимости от устройства их делят на:

Астрономия 10 класс что изучает астрономия. image001. Астрономия 10 класс что изучает астрономия фото. Астрономия 10 класс что изучает астрономия-image001. картинка Астрономия 10 класс что изучает астрономия. картинка image001. Виды телескопов

1) Рефрактор (линзовый)– используется преломление света, лучи

от небесных светил собирает линза (система линз)

Астрономия 10 класс что изучает астрономия. image002. Астрономия 10 класс что изучает астрономия фото. Астрономия 10 класс что изучает астрономия-image002. картинка Астрономия 10 класс что изучает астрономия. картинка image002.

2) Рефлектор (зеркальный)– вогнутое зеркало, способное

фокусировать отражённые лучи

Астрономия 10 класс что изучает астрономия. image003. Астрономия 10 класс что изучает астрономия фото. Астрономия 10 класс что изучает астрономия-image003. картинка Астрономия 10 класс что изучает астрономия. картинка image003.

3) Зеркально-линзовый (комбинированный) – комбинация зеркал и линз

Телескоп состоит из объектива, зрительной трубы, укрепленной на опоре, и окуляра.

Видео. Все о телескопах. Часть 1: виды телескопов(13:26)

Видео. Как сделать телескоп своими руками. Самодельный телескоп Галилео Галилея (7:19)

Астрономия 10 класс что изучает астрономия. image004. Астрономия 10 класс что изучает астрономия фото. Астрономия 10 класс что изучает астрономия-image004. картинка Астрономия 10 класс что изучает астрономия. картинка image004.Крупнейший в России телескоп-рефлектор (рис. 1.7) имеет зеркало диаметром 6 м, отшлифованное с точностью до долей микрометра. Фокусное расстояние зеркала 24 м. Его масса около 40 т. Масса всей установки телескопа более 850 т, а высота 42 м. Управление телескопом осуществляется с помощью компьютера, который позволяет точно навести телескоп на изучаемый объект и длительное время удерживать его в поле зрения, плавно поворачивая телескоп вслед за вращением Земли. Телескоп входит в состав Специальной астрофизической обсерватории Российской академии наук и установлен на Северном Кавказе (близ станицы Зеленчукская в Кабардино-Балкарии) на высоте 2100 м над уровнем моря.

В настоящее время обсуждаются вполне реальные проекты создания телескопов с зеркалами диаметром 25—40 м, устроенными по такому же принципу, а в перспективе намечается создание 100-метрового телескопа-рефлектора.

На смену телескопам в XIX в. пришла фотография, а в настоящее время её во многих случаях заменяют электронные приёмники света. Наибольшее распространение получили полупроводниковые приборы с зарядовой связью (сокращённо ПЗС). Матрицы ПЗС, которые применяются в современных цифровых фотоаппаратах, по своему устройству аналогичны тем, которые используются в астрономии. Некоторые телескопы используются для того, чтобы полученное изображение через компьютер передавалось пользователям Интернета. Это позволяет участвовать в наблюдениях за космическими объектами многим людям, которые интересуются астрономией, в том числе школьникам.

Астрономия 10 класс что изучает астрономия. image005. Астрономия 10 класс что изучает астрономия фото. Астрономия 10 класс что изучает астрономия-image005. картинка Астрономия 10 класс что изучает астрономия. картинка image005.ПЗС незаменимы для телескопов, которые работают в автоматическом режиме, без участия человека. В частности, это касается космического телескопа «Хаббл», который обращается вокруг Земли на высоте около 600 км. Находясь за пределами основной массы атмосферы, этот телескоп с зеркалом диаметром 2,4 м позволяет изучать объекты, которые в 10—15 раз слабее объектов, доступных такому же наземному телескопу. Телескоп «Хаббл» обеспечивает разрешающую способность 0,1ʺ, что недостижимо даже для более крупных наземных телескопов. Под таким углом футбольный мяч виден с расстояния 450 км. Выбор объектов наблюдения и обработка полученных благодаря телескопу «Хаббл» результатов проводится специалистами многих стран. За время его работы на Землю было передано свыше восьмисот тысяч высококачественных фотографий различных космических объектов. В их числе изображения самых далёких галактик, которые образовались более 13 млрд лет назад.

Для приёма радиоизлучения различных космических объектов используются радиотелескопы. Основные элементы устройства радиотелескопа — это антенна, приёмник и приборы для регистрации сигнала. У большинства

Рис. 1.8. Радиотелескоп

радиотелескопов антенны, которые достигают в диаметре 100 м, по форме такие же, как вогнутые зеркала телескопа-рефлектора (рис. 1.8), но собирающие не свет, а радиоволны. Ведь чем больше площадь антенны, тем более слабый источник радиоизлучения можно зарегистрировать. Антенна преобразует принятые ею электромагнитные волны в электрические сигналы, которые затем передаются к приёмнику. В современных радиотелескопах для регистрации сигналов используется компьютер, который сначала запоминает их в цифровой форме, а затем представляет полученные результаты в наглядном виде.

В 2011 г. российские учёные приступили к реализации масштабного международного проекта «Радиоастрон». На основе выведенного на околоземную орбиту радиотелескопа «Спектр-Р» (диаметр антенны 10 м) и радиотелескопов, расположенных на всех континентах земного шара, создаётся единая наземно-космическая система для изучения различных объектов Вселенной в радиодиапазоне. Двигаясь по вытянутой эллиптической орбите, «Спектр-Р» может удаляться от Земли на расстояние порядка 350 тыс. км. Реализация проекта «Радиоастрон» позволила получить новые данные о таких явлениях и процессах, как нейтронные звёзды и сверхмассивные чёрные дыры, о строении и динамике областей звёздообразования в нашей Галактике, а также продвинуться в изучении структуры и эволюции Вселенной.

Астрономия 10 класс что изучает астрономия. image006. Астрономия 10 класс что изучает астрономия фото. Астрономия 10 класс что изучает астрономия-image006. картинка Астрономия 10 класс что изучает астрономия. картинка image006. ВОПРОСЫ для закрепления изученной лекции (устно)

1. Что изучает астрономия?

2. С какими науками астрономия имеет тесную связь в познании Вселенной?

3. Как зовут музу-покровительницу астрономии.

4. Каковы масштабы Вселенной?

5. Главным методом астрономии является…

6. Для чего используется телескоп?

Астрономия 10 класс что изучает астрономия. image007. Астрономия 10 класс что изучает астрономия фото. Астрономия 10 класс что изучает астрономия-image007. картинка Астрономия 10 класс что изучает астрономия. картинка image007. домашнее задание

Составить кроссворд или викторину (12 слов)

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *