как узнать периметр если известна только площадь
Как найти периметр фигуры
Определение периметра
Периметром принято называть длину всех сторон многоугольника. Какой буквой обозначается периметр — заглавной латинской P. Под обозначением «P» удобно писать маленькими буквами название фигуры, чтобы не запутаться в задачах по ходу решения.
Если параметры переданы в разных единицах длины, мы не сможем узнать какая площадь фигуры получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.
В чем измеряется периметр:
Формула нахождения периметра
Рассмотрим пять фигур.
Треугольник
Периметр треугольника — это сумма длин трех его сторон.
P = a + b + c, где a, b, c — длина стороны.
Формула измерения периметра для равностороннего треугольника — это произведение длины стороны на три.
P = 3 * a, где a — длина стороны.
Квадрат и ромб
Периметр квадрата — это произведение длины стороны на четыре. Формула ромба выглядит идентично.
P = 4 * a, где a — длина стороны.
Прямоугольник и параллелограмм
Периметр прямоугольника — сумма длины и ширины, умноженная на два. Формула параллелограмма выглядит соответственно.
P = 2 * (a + b), где a — ширина, b — высота.
Записывайтесь на онлайн уроки по математике к лучшим преподавателям! Уроки для учеников с 1 по 11 классы!
Равнобедренная трапеция
Формула для равнобедренной трапеции отличается от прямоугольника тем, что у первого есть две равные стороны.
P = a + b + 2 * c, где a, b — параллельные стороны, c — две длины одинаковых сторон.
Периметр круга или длина окружности — это произведение радиуса на два Пи или произведение диаметра на Пи.
L = d * π = 2 * r * π, где d — диаметр, r — радиус, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.
Можно выучить все формулы, а можно, запомнив определение о сумме всех сторон, каждый раз проявлять смекалку и вычислять самостоятельно. Давайте потренируемся, как определять периметр фигур!
Решение задач
Равнобедренный треугольник имеет периметр 40 см, длина его основания составляет 6 см. Какую длину будут иметь две другие стороны?
Ответ: две другие стороны равны 17см.
Круг вписан в квадрат, его сторона равна 20 см. Найти периметр круга.
Как найти периметр прямоугольника
Основные определения
Прямоугольником принято называть четырехугольник, у которого равны все углы. Они также являются прямыми и составляют 90°.
Периметр — это длина всех сторон многоугольника. Общепринятое обозначение — заглавная латинская буква P. Под «P» удобно писать маленькими буквами название фигуры, чтобы не запутаться в задачах по ходу решения.
Если параметры переданы в разных единицах длины, мы не сможем узнать какая площадь фигуры получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.
В чем измеряется периметр:
Формула нахождения периметра прямоугольника
Способ вычисления нужно выбрать, отталкиваясь от исходных данных. Далее рассмотрим четыре классические формулы.
Когда известны все или две соседние стороны
P = a + b + c + d, где a, b, c, d — стороны.
Когда известна любая сторона и площадь
P = 2 * (a + S : a), где a — сторона, S — площадь.
Площадь — это плоскость внутри замкнутой геометрической фигуры.
Когда известна любая сторона и диагональ
Диагональ — это отрезок, который соединяет противоположные стороны фигуры.
Когда известна одна любая сторона и радиус описанной окружности
Радиус — отрезок, соединяющий центр и любую точку окружности.
Решение задач
А теперь практиковаться!
1. Одна сторона прямоугольника 9 см, а другая на 11 см длиннее. Как узнать периметр?
2. Площадь прямоугольника составляет 60 м², ширина равна 15 м. Чему равен периметр фигуры?
А еще можно вот так:
Ответ — такой же, 38 м.
3. Как найти периметр прямоугольника, если его диагональ в два раза больше длины равной 8 см?
Как найти периметр зная площадь
ИнструкцияДля квадрата периметр (P) равен четырехкратному значению одной его стороны (b). P = 4*b или сумме значений длин всех его сторон P = b + b + b + b. Площадь квадрата выражается в произведении двух смежных сторон. Найдите длину одной из сторон квадрата. Если вам известна только площадь (S), извлеките из ее значения квадратный корень a = √S. Далее определите периметр.
Дано: площадь квадрата равна 36 см². Найдите периметр фигуры.Решение 1. Найдите сторону квадрата: b = √S, b = √36 см², b =6 см. Найдите периметр: P = 4*b, P = 4*6см, P = 24 см. Или Р = 6 + 6 + 6 + 6, Р = 24см.Ответ: периметр квадрата площадью 36 см² равен 24 см.
None Решение 2. Найдите периметр квадрата: P = 4*√S, P = 4*√36см², P = 24 см.Ответ: периметр квадрата равен 24 см.
Многие параметры этой геометрической фигуры связаны между собой. Зная один из них, вы сможете найти любой другой. Существуют также следующие формулы вычисления:Диагональ: a² = 2*b², где а – диагональ, b – сторона квадрата.
Или a²=2S. Радиус вписанной окружности: r = b/2, где b – сторона. Радиус описанной окружности: R = ½*d, где d – диагональ квадрата.
Обратите вниманиеПолезные свойства квадрата:Квадрат – правильный четырехугольник, обладающий свойствами прямоугольника и ромба.Квадрат – прямоугольник, у которого все стороны равны.Квадрат – ромб, у которого все углы по 90 градусов.Квадрат – грань куба.Диагонали квадрата равны и пересекаются под прямым углом.Диагональ квадрата разбивает его на два равных прямоугольных треугольника и является гипотенузой к каждому из этих треугольников.
Диагональ квадрата – это диаметр описанной в фигуру окружности.
площадь
прямоугольника, если известно, что его периметр равен 40, а длина b в 1,5 раза больше ширины a.
Решение. Используйте известную формулу периметра, он равен сумме всех сторон фигуры. В данном случае P = 2•a + 2•b.
Из начальных данных задачи вы знаете, что b = 1,5•a, следовательно, P = 2•a + 2•1,5•a = 5•a, откуда a = 8. Найдите длину b = 1,5•8 = 12.
Запишите формулу для площади прямоугольника:S = a•b,Подставьте известные величины:S = 8•*12 = 96.
Квадрат.Задача: найдите площадь квадрата, если периметр равен 36.
Решение.Квадрат – частный случай прямоугольника, где все стороны равны, следовательно, его периметр равен 4•a, откуда a = 8. Площадь квадрата определите по формуле S = a² = 64.
Треугольник.Задача: пусть дан произвольный треугольник ABC, периметр которого равен 29. Узнайте величину его площади, если известно, что высота BH, опущенная на сторону AC, делит ее на отрезки с длинами 3 и 4 см.
Решение.Для начала вспомните формулу площади для треугольника:S = 1/2•c•h, где c – основание и h – высота фигуры. В нашем случае основанием будет сторона AC, которая известна по условию задачи: AC = 3+4 = 7, осталось найти высоту BH.
Высота является перпендикуляром, проведенным к стороне из противоположной вершины, следовательно, она делить треугольник ABC на два прямоугольных треугольника. Зная это свойство, рассмотрите треугольник ABH. Вспомните формулу Пифагора, согласно которой:AB² = BH² + AH² = BH² + 9 → AB = √(h² + 9).В треугольнике BHC по тому же принципу запишите:BC² = BH² + HC² = BH² + 16 → BC = √(h² + 16).
Примените формулу периметра:P = AB + BC + ACПодставьте величины, выраженные через высоту:P = 29 = √(h² + 9) + √(h² + 16) + 7.
Решите уравнение:√(h² + 9) + √(h² + 16) = 22 → [замена t² = h² + 9]:√(t² + 7) = 22 – t, возведите обе стороны равенства в квадрат:t² + 7 = 484 – 44•t + t² → t≈10,84h² + 9 = 117,5 → h ≈ 10,42Найдите площадь треугольника ABC:S = 1/2•7•10,42 = 36,47.
Инструкция
Обнаружить периметр квадрата через площадь дозволено, не прибегая к лишнему действию (вычислению стороны). Для этого воспользуйтесь формулой вычисления периметра, объективной только для квадрата P = 4*?S.
Решение 2. Обнаружьте периметр квадрата : P = 4*?S, P = 4*?36см?, P = 24 см.Результат: периметр квадрата равен 24 см.
Совет 2: Как обнаружить периметр в математике
Периметр – это суммарная длина сторон геометрической фигуры. Но если возникнет надобность стремительно рассчитать периметр чего-либо (скажем, во время ремонта либо строительства), не всякий сумеет это сделать с легкостью. Припомним основные правила для вычисления периметра. Вам понадобится
Инструкция
Периметр для квадратов и ромбов рассчитывается по формуле Р=4а, где а – это длина одной стороны фигуры. От того что все ее стороны равны, измерьте одну сторону и полученное число умножьте на число сторон, т.е. на четыре. 2. Для прямоугольников и параллелограммов, т.к. у них равны не все стороны, а только противоположные, существует иная формула: Р=2(а+b). Под а и b подразумеваются смежные стороны. Их всеобщую длину умножьте на два.
Дабы получить периметр трапеции суммируйте длины всех ее сторон (у трапеции они не идентичны), т.е. в данном случае воспользуйтесь формулой P=а+b+с+d.
Всеобщая формула для расчета периметра треугольника выглядит как Р=а+b+с, т. е. вы обязаны будете сложить длины сторон треугольника.
Но от того что треугольники бывают различных видов, то вычисления могут производиться напротив. Скажем, если вам вестимо, что измеряемый треугольник – равносторонний, то умножьте длину его стороны на три.
Больше трудно вычислить периметр круга (длина окружности, р). Вестимо, что длина окружности составляет 317 от длины диаметра круга (d). В математике это соотношение принято обозначать буквой “Пи” (?) и усреднено считать как 3,14. Получается, что рd=?. Отсель p=?d=2?r, где r – это радиус имеющейся окружности. Следственно, дабы вычислить периметр круга, вам нужно вначале обнаружить радиус окружности, а после этого умножить это число на 2 и на 3,14.
Если же у вас появилась надобность узнать периметр дуги, то для начала вам необходимо замерить две величины – длину радиуса дуги и центральный, т.е. образованный двумя радиусами (в градусах, n). Подставьте полученные величины в формулу p=Пrn180°.
Видео по теме
Совет 3: Как обнаружить сторону квадрата, если вестима его диагональ
Квадрат является одной из особенно примитивных геометрических фигур в плане вычисления его параметров – длин сторон и диагоналей, площади и периметра. Это определяется тем, что в различие от других многоугольников, неизменно вестимы величины всех его углов, а также довольно знать длину каждого одной стороны. Нахождение длины стороны квадрата по вестимой длине диагонали, как в всеобщем виде, так и с фактическими расчетами не представляет трудности.
Инструкция
Введите вестимую длину стороны, после этого нажмите клавишу со звездочкой и Enter – так вы исполните операцию возведения в квадрат. После этого нажмите клавишу с косой чертой, введите двойку и нажмите Enter. Позже этого щелкните кнопку с надписью sqrt и увидите желанную длину стороны квадрата – 10,606601717798212866012665431573 сантиметров.
Совет 4: Как обнаружить площадь, зная диаметр
Задачи на вычисление площади круга зачастую встречаются в школьном курсе геометрии. Дабы обнаружить площадь круга, нужно знать длину диаметра либо радиуса окружности, в которую он заключен. Вам понадобится
Инструкция
Площадь круга измеряется в единицах площади — мм2, см2, м2 и т.п. В каких единицах выражается полученная вами площадь круга, зависит от того, в каких единицах был дан диаметр окружности.
Если вам нужно вычислить площадь кольца, воспользуйтесь формулой: S=?(R-r)^2, где R, r – радиусы внешней и внутренней окружностей кольца соответственно.
Полезный совет
Существует Интернациональный день числа «пи», тот, что отмечается 14 марта. Точное время наступления триумфальной даты — 1 час 59 минут 26 секунд, согласно цифрам числа — 3,1415926….
Совет 5: Как обнаружить площадь и периметр квадрата
Квадрат представляет собой геометрическую фигуру, состоящую из четырех сторон идентичной длины и четырех прямых углов, всякий из которых равен 90°. Определение площади либо периметра четырехугольника, причем всякого, требуется не только при решении задач по геометрии, но и в повседневной жизни. Эти знания могут стать пригодными, скажем, во время ремонта при расчете необходимого числа материалов – покрытий для пола, стен либо потолка, а также для разбивки газонов и грядок и т.д.
Инструкция
Для определения площади квадрата умножьте величину длины на величину ширины. Потому что в квадрате длина и ширина идентичны, то значение одной стороны довольно построить в квадрат. Таким образом, площадь квадрата равна длине его стороны, возведенной в квадрат. Единицей измерения площади могут быть квадратные миллиметры, сантиметры, дециметры, метры, километры.Дабы определить площадь квадрата, дозволено воспользоваться формулойS = aa, где S – площадь квадрата,а – сторона квадрата. 2. Пример № 1. Комната имеет форму квадрата. Сколько ламината (в кв.м) понадобится для того, дабы всецело покрыть пол, если длина одной стороны комнаты составляет 5 метров.Запишите формулу: S = aa. Подставьте в нее указанные в условии данные.Потому что а = 5 м, следственно, площадь будет равнаS (комнаты) = 5х5= 25 кв.м, значит, и S (ламината) = 25 кв.м.
Периметр представляет собой всеобщую длину границы фигуры. В квадрате периметр – это длина всех четырех, причем идентичных, сторон. То есть, периметр квадрата представляет собой сумму всех его четырех сторон.
Дабы вычислить периметр квадрата, довольно знать длину одной его стороны. Измеряется периметр в миллиметрах, сантиметрах, дециметрах, метрах, километрах. Для определения периметра имеется формула:P = a + а + а + а илиP = 4a, гдеР – периметр,а – длина стороны.
Пример № 2. Для отделочных работ помещения в форме квадрата требуются потолочные плинтуса. Вычислите всеобщую длину (периметр) плинтусов, если величина одной стороны комнаты равна 6 метров.
Запишите формулу P = 4a. Подставьте в нее указанные в условии данные:Р (комнаты) = 4 х 6 = 24 метра. Следственно, длина потолочных плинтусов тоже будет равна 24 метров.
Видео по теме
Обратите внимание!
Пригодные свойства квадрата:Квадрат – верный четырехугольник, владеющий свойствами прямоугольника и ромба. Квадрат – прямоугольник, у которого все стороны равны. Квадрат – ромб, у которого все углы по 90 градусов.
Квадрат – грань куба. Диагонали квадрата равны и пересекаются под прямым углом. Диагональ квадрата разбивает его на два равных прямоугольных треугольника и является гипотенузой к всем из этих треугольников.
Данные необходимые для того чтобы найти периметр
Сумма всех сторон прямоугольника называется периметром – это еще мы уяснили из курса арифметики начальных классов. Как видно из условия необходимо знать длину сторон. Площадь же – результат умножения двух сторон, в этом случае так же необходимо знать длину сторон. И в первом и во втором случае обязательным условием является знание длин сторон А и В.
Как же через показатель площади найти у прямоугольника периметр? Тут может быть два варианта: первый, если наш прямоугольник с равными сторонами, то есть квадрат, а второй, если длина сторон разная.
При условии, что потолок квадратный то найти периметр очень просто. Зная формулу нахождения площади квадрата, можно выяснить найти длину всех сторон, ведь они у квадрата одинаковые.
Довольно простой способ, который позволит посчитать периметр квадратного потолка. Квадратный потолок будет отличаться тем что, при большом показателе периметра будет относительно не большие площади. Однако квадратные потолки – это довольно редкий случай. Как правило, такие помещения не очень смотрятся, поэтому наиболее распространенные являются прямоугольные потолки.
Можно ли также найти периметр не квадратного прямоугольника?
Данный способ для прямоугольника с разными сторонами не подходит. Ведь вариантов разности сторон может быть до бесконечности много. И тут для определения периметра обязательным условием является знание хотя бы одной из сторон и площади.
Площадь = длина первой стороны умножается на длину второй стороны
Исходя из этой формулы, зная площадь найти две неизвестные стороны прямоугольника невозможно, но возможно выяснить длину одной стороны, если есть длина первой. Так если площадь прямоугольника 10 квадратных метров, а длина одной из сторон 2 метра, то можно посчитать10 = 2 умножить на длину неизвестной стороны, следовательно, неизвестная сторона = 10 разделить на 2. Получаем ответ 5 метров.
Периметр = ( 5 + 2 ) * 2. Периметр такого прямоугольника будет 14 метров.
Таким образом, с подсчетом не возникнет проблем, если вы хорошо учили арифметику. Однако для того чтобы упростить себе жизнь, можно обратиться в фирмы по ремонту квартир. Мастера подобных организаций берут на себя весь процесс расчетов и монтажных работ, вам только необходимо будет подписать с ними соответствующие документы и все.
Использование подобных услуг – это очень простой способ решения нудной проблемы ремонта потолков. Вы получаете компетентную помощь от высококвалифицированной бригады мастеров, которые имеют большой опыт работы. А подписывая с ними контракт, вы страхуете себя от ненужных проблем, которые порою бывают из-за недопонимания.
При планировании бюджета на ремонт потолка, после проведенных расчетов необходимо закупить расходные материалы. Рекомендуется покупать немного больше требуемого объема материалов, так как бывают случаи с неожиданным результатом. Так хорошо будет брать запас в 15 процентов – это оптимальный объем.
Но еще более приемлемым будет заказать ремонт потолков под ключ, ведь в этом случае нет надобности беспокоиться о закупках. Мастера сами предложат выбрать материалы для ремонта, после того как выбор был сделан они привезут и сделают ремонт. Как правило, у них налажена система логистики, поэтому с доставкой не возникает проблем.
Если вы цените свое время и нервы, рекомендуется обратиться к подобным компаниям по ремонту потолков под ключ. Вы получите качественный сервис в короткие сроки, и ваш потолок будет радовать вас как никогда прежде. В любом случае решение остается за вами!
Калькулятор вычисления периметра и площади геометрических фигур
Определение периметра и площади геометрических фигур — важная задача, которая возникает при решении многих практических или бытовых задач. Если вам требуется поклеить обои, установить забор, рассчитать расход краски или кафеля, то вам обязательно придется иметь дело с геометрическими расчетами.
Для решения перечисленных бытовых вопросов вам потребуется работать с самыми разными геометрическими фигурами. Мы представляем вам каталог онлайн-калькуляторов, которые позволяют вычислить параметры наиболее популярных плоских фигур. Рассмотрим их.
Окружность — это множество точек на плоскости, которые равноудалены от центра на некоторое расстояние, называемое радиусом. Многие считают круг и окружность синонимами, однако это не так. Круг — это часть плоскости, ограниченная окружностью. Вы можете отыскать периметр и площадь круга, но у окружности найти можно только длину, так как она представляет собой кривую, не имеющую площади. Длина окружности или периметр круга находятся по простой формуле:
где R – радиус фигуры.
Площадь круга рассчитывается согласно следующему выражению:
Круги часто встречаются в реальной жизни. В основном это основания цилиндрических и конических деталей, а также просто круглые поверхности, например, круглые столики, диски, грампластинки или катушки. Вид окружности имеют колеса, обручи или кольца. В трехмерной реальности окружность превращается в сферу, а круг — в шар. Форму этих геометрических тел имеют многие реальные и природные объекты. Благодаря своей эффективности круг охватывает максимальную площадь при минимальном периметре. Именно поэтому форму шара имеют капли, снежные комья, метеориты или планеты.
Треугольник
Треугольник — первая гармоничная фигура на плоскости, ограниченная тремя отрезками. Свойства треугольника известны людям с античных времен: изучение фигуры стартовало в Древнем Египте и не завершено до сих пор. Огромный вклад в изучение свойств фигуры внесли Евклид, Эйлер и Лобачевский, но даже сегодня продолжается работа над поиском замечательных точек треугольника, которых на данный момент найдено более 6 тысяч. Для определения периметра фигуры достаточно сложить длины всех сторон треугольника по формуле:
где a, b, c – стороны.
Для вычисления площади треугольника используется 5 различных формул плюс нахождение площади через определенный интеграл. Самое простое выражение для вычисления площади:
где a — сторона треугольника, h — его высота.
Наш калькулятор позволяет отыскать площадь или периметр треугольника, зная разные комбинации нескольких параметров, таких как углы, стороны или радиусы связанных окружностей.
Треугольники не слишком распространены в реальной повседневности. В природе они практически не встречаются, за исключением кристаллических решеток некоторых молекул или формы ушей у рыси. А вот в технике, геометрии и прикладных науках треугольник — царь и бог. Наибольшее применение находит следующий тип фигуры.
Прямоугольный треугольник
Прямоугольный треугольник — особая вариация фигуры, у которой две стороны обязательно образуют прямой угол. Эти стороны называются катетами, а противолежащая им сторона — гипотенузой. Соотношение катетов и гипотенузы лежит в основе евклидовой геометрии — эти соотношения определяются теоремой Пифагора. Изучение свойств прямоугольного треугольника положило начало одному из важных разделов математики — тригонометрии, которая используется в самых разных прикладных сферах от компьютерных игр до океанографии.
Формулы для вычисления периметра и площади прямоугольного треугольника ничем не отличаются от формул для обычных вариаций данной фигуры или вытекают из них.
Трапеция
Трапеция, как и слово трапеза, по-гречески означают «стол». Это плоская фигура, ограниченная четырьмя прямыми, две из которых параллельны, а две — нет. По сути, это выпуклый четырехугольник, поэтому параллелограмм и прямоугольник считаются частными случаями трапеции. В общем случае все стороны трапеции имеют разную длину, и для вычисления периметра используется формула:
a, b, c и d – стороны четырехугольника.
Площадь фигуры определяется как:
где a и b – параллельные стороны трапеции, h – высота.
Трапеция очень часто встречается в рукотворном мире. Грани многих предметов имеют вид этого четырехугольника, а буквально трапецеидальную форму имеют такие объекты как автомобильные окна, паруса, скаты крыш или юбки.
Параллелограмм
Параллелограмм — это элегантный четырехугольник, пары сторон которого параллельны друг другу. Любой четырехугольник становится параллелограммом, если его противолежащие стороны параллельны, диагонали в точке пересечения разделяются пополам, а противоположные углы равны. Для вычисления периметра параллелограмма используется простая формула, которая иллюстрирует сумму попарно равных сторон:
Площадь параллелограмма не зависит от величины его углов, и находится по следующей формуле:
Параллелограммы часто встречаются в реальной жизни: это грани многих призматических объектов, очертания полей, спортивных площадок или клумб. Форму параллелограммов имеют практически все отделочные материалы: плитка, кафель, гипсокартон, паркет. Такое разнообразие обусловлено тем, что частными случаями параллелограмма являются прямоугольник, ромб и квадрат, формулы для определения периметров и площадей которых аналогичны или выводятся из теоремы Пифагора.
Частные случаи
Ромб — четырехугольник с одинаковыми сторонами. Параллелограмм становится ромбом в случаях, если его диагонали пересекаются под углом 90 градусов и являются биссектрисами своих углов.
Прямоугольник — это параллелограмм с прямыми углами. Кроме того, параллелограмм считается прямоугольником, если его стороны и диагонали отвечают условиям теоремы Пифагора.
Квадрат — это параллелограмм, у которого все стороны равны и все углы равны. Диагонали квадрата полностью повторяют свойства диагоналей прямоугольника и ромба, что делает квадрат уникальной фигурой, которая характеризуется максимальной симметрией.
Многоугольник
Правильный полигон — это выпуклая фигура на плоскости, которая имеет равные стороны и равные углы. В зависимости от количества сторон многоугольники имеют собственные названия:
И так далее. Геометры шутят, что круг — это многоугольник с бесконечным количеством углов. Наш калькулятор запрограммирован на определение периметров и площадей только правильных многоугольников. Он использует общие формулы для всех правильных полигонов. Для вычисления периметра используется формула:
где n – количество сторон многоугольника, a – длина стороны.
Для определения площади используется выражение:
S = n/4 × a 2 × ctg(pi/n).
Подставляя соответствующее n, мы можем подобрать формулу для любого правильного многоугольника, к которым также относятся равносторонний треугольник и квадрат.
Многоугольники имеют большое распространение в реальной жизни. Так форму пятиугольника имеет здание министерства обороны США — Пентагон, гексагона — пчелиные соты или кристаллы снежинки, октагона — дорожные знаки. Кроме того, многие простейшие, например радиолярии, имеют форму правильных полигонов.
Примеры из реальной жизни
Давайте рассмотрим пару примеров использования нашего калькулятора в реальных расчетах.
Покраска забора
Покраска поверхностей и расчет краски — это одни из самых очевидных бытовых задач, в которых требуются минимальные математические расчеты. Если нам нужно покрасить забор, высота которого составляет 1,5 метра, а длина 20 метров, то сколько потребуется банок краски? Для этого нужно узнать суммарную площадь забора и расход лакокрасочных материалов на 1 квадратный метр. Мы знаем, что расход эмали составляет 130 грамм на метр. Теперь определим площадь забора, используя калькулятор для вычисления площади прямоугольника. Она составит S = 30 квадратных метров. Естественно, что забор мы будем красить с обеих сторон, поэтому площадь для покраски увеличится до 60 квадратов. Тогда нам понадобится 60 × 0,13 = 7,8 килограмм краски или три стандартных банки по 2,8 килограмма.
Отделка бахромой
Пошив одежды — еще одна отрасль, в которой необходимы обширные геометрические познания. Пусть нам надо отделать бахромой платок, который представляет собой равнобедренную трапецию со сторонами 150, 100, 75 и 75 см. Для вычисления расхода бахромы нам потребуется узнать периметр трапеции. В этом нам и пригодится онлайн-калькулятор. Введем эти данные ячейки и получим ответ:
Таким образом, нам понадобится 4 м бахромы для отделки платка.
Заключение
Плоские фигуры составляют реальный мир вокруг. Мы часто задавались в школе вопросом, пригодится ли нам геометрия в будущем? Выше приведенные примеры показывают, что математика постоянно используется в повседневной жизни. И если площадь прямоугольника для нас привычна, то вычислить площадь додекагона может оказаться трудной задачей. Используйте наш каталог калькуляторов для решения школьных заданий или бытовых вопросов.