как узнать радиус атома

Радиус атома

Из Википедии — свободной энциклопедии

как узнать радиус атома. im274 479px Helium atom QM.svg. как узнать радиус атома фото. как узнать радиус атома-im274 479px Helium atom QM.svg. картинка как узнать радиус атома. картинка im274 479px Helium atom QM.svg.

как узнать радиус атома. im274 601px Ethanol 3D vdW. как узнать радиус атома фото. как узнать радиус атома-im274 601px Ethanol 3D vdW. картинка как узнать радиус атома. картинка im274 601px Ethanol 3D vdW.

Электроны не имеют четко определённых орбит или границ. Скорее, их положения могут быть описаны как распределения вероятностей, которые постепенно сужаются по мере удаления от ядра без резкого сокращения. Кроме того, в конденсированном веществе и молекулах электронные облака атомов обычно в некоторой степени перекрываются, и некоторые из электронов могут перемещаться в области, охватывающей два или более атомов («принадлежать» нескольким атомам одновременно).

Во многих случаях форма атома может быть аппроксимирована сферой. Это лишь грубое приближение, но оно может дать количественные представления и выступить в качестве базовой модели для описания для многих явлений, таких как плотность жидкостей и твердых веществ, диффузия жидкостей через молекулярные сита, расположение атомов и ионов в кристаллах, а также размер и форма молекул.

Радиусы атомов изменяются, подчиняясь определённым закономерностям периодической таблицы химических элементов. Например, радиусы атомов обычно уменьшаются при перемещении слева направо вдоль каждого периода (строки) таблицы, от щелочных металлов до благородных газов, и возрастают по мере продвижения сверху вниз в каждой группе (столбце). Радиусы атомов резко возрастают при переходе между благородным газом в конце каждого периода и щелочным металлом в начале следующего периода. Эти тенденции изменения радиусов атомов (наряду с другими химическими и физическими свойствами элементов) могут быть объяснены с точки зрения теории электронной оболочки атома, а также представляют доказательства подтверждения квантовой теории. Радиусы атомов уменьшаются в периодической таблице, потому что с увеличением атомного номера увеличивается число протонов в атоме, а дополнительные электроны добавляются в одну и ту же квантовую оболочку. Следовательно, эффективный заряд атомного ядра по отношению к внешним электронам увеличивается, притягивая внешние электроны. В результате электронное облако сжимается и атомный радиус уменьшается.

Источник

Атомный радиус: что такое и как определить

Чтобы разобраться в вопросе, что в современной науке называется радиусом атома, вспомним, что из себя представляет сам атом. По классическим представлениям в центре атома находится ядро, состоящее из протонов и нейтронов, а вокруг ядра каждый на своей орбите вращаются электроны.

Радиус атома в физике

Поскольку в данной модели строения атома электроны являются пространственно ограниченными частицами, т. е. корпускулами, логично считать атомным радиусом (а. р.) расстояние от его ядра до самой дальней, или внешней, орбиты, по которой вращаются так называемые валентные электроны.

Однако по современным, квантовомеханическим представлениям, определить данный параметр нельзя так однозначно, как это делается в классической модели. Здесь электроны уже не представляются в виде частиц-корпускул, а получают свойства волн, т. е. пространственно-неограниченных объектов. В такой модели точно определить положение электрона просто невозможно. Здесь эта частица уже представляется в виде электронной орбитали, плотность которой меняется, в зависимости от расстояния до ядра атома.

Итак, в современной модели строения атома его радиус нельзя определить однозначно. Поэтому в квантовой физике, общей химии, физике твердого тела и других смежных науках эту величину сегодня определяют как радиус сферы, в центре которой находится ядро, внутри которой сосредоточено 90-98% плотности электронного облака. Фактически это расстояние и определяет границы атома.

Если рассмотреть Периодическую таблицу химических элементов (таблицу Менделеева), в которой приведены атомные радиусы, можно увидеть определенные закономерности, которые выражаются в том, что в пределах периода эти числа уменьшаются слева направо, а в пределах группы они увеличиваются сверху вниз. Такие закономерности объясняются тем, что внутри периода при движении слева направо заряд атома возрастает, что увеличивает силу притяжения им электронов, а при движении внутри группы сверху вниз все больше заполняется электронных оболочек.

как узнать радиус атома. kak opredelit atoma. как узнать радиус атома фото. как узнать радиус атома-kak opredelit atoma. картинка как узнать радиус атома. картинка kak opredelit atoma.

Атомный радиус в химии и кристаллографии

Какие бывают виды

Данная характеристика сильно варьируется, в зависимости от того, в какой химической связи состоит атом. Поскольку все вещества в природе в подавляющем своем большинстве состоят из молекул, понятие а. р. используют для определения межатомных расстояний в молекуле. А данная характеристика зависит от свойств входящих в молекулу атомов, т. е. их положения в Периодической системе химических элементов. Обладая разными физическими и химическими свойствами, молекулы образуют все огромное разнообразие веществ.

По сути, эта величина очерчивает сферу действия силы электрического притяжения ядра атома и его внешних электронных оболочек. За пределами этой сферы в действие вступает сила электрического притяжения соседнего атома. Существует несколько типов химической связи атомов в молекуле:

Соответственно этим связям таким же будет и атомный радиус.

как узнать радиус атома. izmenenie radiusov atomov v gruppe i periodakh. как узнать радиус атома фото. как узнать радиус атома-izmenenie radiusov atomov v gruppe i periodakh. картинка как узнать радиус атома. картинка izmenenie radiusov atomov v gruppe i periodakh.

Как зависит от типа химической связи

При ковалентной связи АР определяется как половина расстояния между соседними атомами в одинарной химической связи Х—Х, причем Х — это неметалл, ибо данная связь свойственна неметаллам. Например, для галогенов ковалентный радиус будет равен половине межъядерного расстояния Х—Х в молекуле Х2, для молекул селена Se и серы S — половине расстояния Х—Х в молекуле Х8, для углерода С он будет равен половине кратчайшего расстояния С—С в кристалле алмаза.

Данная химическая связь обладает свойством аддитивности, т. е. суммирования, что позволяет определять межъядерные расстояния в многоатомных молекулах. Если связь в молекуле двойная или тройная, то ковалентный АР уменьшается, т. к. длины кратных связей меньше одинарных.

При ионной связи, образующейся в ионных кристаллах, используют значения ионного АР для определения расстояния между ближайшими анионом и катионом, находящимися в узлах кристаллической решетки. Такое расстояние определяется как сумма радиусов этих ионов.

Существует несколько способов определения ионных радиусов, при которых отличаются значения у индивидуальных ионов. Но в результате эти способы дают примерно одинаковые значения межъядерных расстояний. Эти способы или системы были названы в честь ученых, проводивших в этой области соответствующие исследования:

При металлической связи, возникающей в кристаллах металлов, АР принимаются равными половине кратчайшего расстояния между ними. Металлический радиус зависит от координационного числа К. При К=12 его значение условно принимается за единицу. Для координационных чисел 4, 6 и 8 металлические радиусы одного и того же элемента соответственно будут равны 0.88, 0.96 и 0.98.

Если взять два разных металла и сравнить металлические радиусы их элементов, то близость этих значений друг к другу будет означать необходимое, но недостаточное условие взаимной растворимости этих металлов по типу замещения. Например, жидкие калий К и литий Li в обычных условиях не смешиваются и образуют два жидких слоя, потому что их металлические радиусы сильно различаются (0.236 нм и 0.155 нм соответственно), а калий К с цезием Cs образуют твердый раствор благодаря близости их радиусов (0.236 нм и 0.268 нм).

как узнать радиус атома. kak opredelit radius. как узнать радиус атома фото. как узнать радиус атома-kak opredelit radius. картинка как узнать радиус атома. картинка kak opredelit radius.

Ван-дер-ваальсовы АР используют для определения эффективных размеров атомов благородных газов, а также расстояний между ближайшими одноименными атомами, принадлежащими разным молекулам и не связанными химической связью (пример — молекулярные кристаллы). Если такие атомы сблизятся на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, между ними возникнет сильное межатомное отталкивание. Эти радиусы определяют минимально допустимые границы контакта двух атомов, принадлежащих соседним молекулам.

Кроме того, данные АР используют для определения формы молекул, их конформаций и упаковки в молекулярных кристаллах. Известен принцип «плотной упаковки», когда молекулы, образующие кристалл, входят друг в друга своими «выступами» и «впадинами». На основе этого принципа интерпретируются данные кристаллографии и предсказываются структуры молекулярных кристаллов.

Видео

Это полезное видео поможет вам понять, что такое радиус атома.

Источник

Атомный радиус, как он измеряется, как он изменяется в периодической таблице, примеры

атомный радиус это важный параметр для периодических свойств элементов таблицы Менделеева. Это напрямую связано с размером атомов, поскольку на большем радиусе они больше или громоздче. Кроме того, это связано с электронными характеристиками того же.

Пока атом имеет больше электронов, тем больше его размер и атомный радиус. Оба определяются электронами валентной оболочки, потому что на расстояниях за пределами их орбит вероятность обнаружения электрона приближается к нулю. В окрестности ядра происходит обратное: увеличивается вероятность нахождения электрона.

как узнать радиус атома. radio atmico cmo se mide cmo cambia en la tabla peridica ejemplos. как узнать радиус атома фото. как узнать радиус атома-radio atmico cmo se mide cmo cambia en la tabla peridica ejemplos. картинка как узнать радиус атома. картинка radio atmico cmo se mide cmo cambia en la tabla peridica ejemplos.

Верхнее изображение представляет собой упаковку ватных шариков. Обратите внимание, что каждый из них окружен шестью соседями, не считая другого возможного верхнего или нижнего ряда. Способ уплотнения ватных шариков будет определять их размеры и, следовательно, их радиусы; как это происходит с атомами.

Элементы в соответствии с их химической природой так или иначе взаимодействуют со своими собственными атомами. Следовательно, величина атомного радиуса варьируется в зависимости от типа присутствующей связи и твердой упаковки ее атомов..

Как измеряется атомный радиус?

как узнать радиус атома. radio atmico cmo se mide cmo cambia en la tabla peridica ejemplos. как узнать радиус атома фото. как узнать радиус атома-radio atmico cmo se mide cmo cambia en la tabla peridica ejemplos. картинка как узнать радиус атома. картинка radio atmico cmo se mide cmo cambia en la tabla peridica ejemplos.

На основном изображении можно легко измерить диаметр ватных шариков, а затем разделить его на два. Однако сфера атома не полностью определена. Почему? Потому что электроны циркулируют и диффундируют в определенных областях пространства: орбитали.

Поэтому атом можно рассматривать как сферу с неощутимыми краями, о которых невозможно точно сказать, в какой степени они заканчиваются. Например, на верхнем изображении центральная область около ядра выглядит более интенсивной, а ее края размыты.

Изображение представляет двухатомную молекулу E2 (как Cl2, H2, О2, и т.д.). Предполагая, что атомы являются сферическими телами, если расстояние было определено d что разделяет оба ядра в ковалентной связи, то было бы достаточно разделить его на две половины (d/ 2) получить атомный радиус; точнее, ковалентный радиус E для E2.

А если Е не образует с собой ковалентных связей, но это металлический элемент? то d это будет указано числом соседей, которые окружают Е в его металлической структуре; то есть по координационному числу (N.C) атома в упаковке (помните ватные шарики основного изображения).

Определение межъядерного расстояния

Определить d, это межъядерное расстояние для двух атомов в молекуле или упаковке, это требует методов физического анализа.

Одной из наиболее часто используемых является дифракция рентгеновских лучей, в которой пучок света облучается через кристалл, и изучается дифракционная картина, возникающая в результате взаимодействия электронов с электромагнитным излучением. В зависимости от упаковки могут быть получены различные дифракционные картины и, следовательно, другие значения d.

Если атомы «плотно» в кристаллической решетке, они будут представлять разные значения d по сравнению с тем, что они имели бы, если бы они были «удобными». Кроме того, эти межъядерные расстояния могут колебаться в значениях, поэтому атомный радиус фактически состоит из среднего значения таких измерений.

Как связаны атомный радиус и координационное число? В. Гольдшмидт установил взаимосвязь между ними, в которой для N.C. из 12 относительное значение равно 1; от 0,97 для упаковки, где атом имеет N.C, равный 8; 0,96 для N.C, равного 6; и 0,88 для N.C. из 4.

единицы

Из значений для N.C, равных 12, было построено много таблиц, сравнивающих атомные радиусы всех элементов периодической таблицы..

Поскольку не все элементы образуют такие компактные структуры (N.C меньше 12), соотношение В. Гольдшмидта используется для расчета их атомных радиусов и выражения для одной и той же упаковки. Таким образом, измерения атомных радиусов стандартизированы.

Как это меняется в периодической таблице?

На протяжении периода

Слева направо в тот же период, ядро ​​добавляет протоны и электроны, но последние ограничены тем же уровнем энергии (главное квантовое число). Как следствие, ядро ​​оказывает увеличивающийся эффективный заряд ядра на валентные электроны, который сжимает атомный радиус..

Таким образом, неметаллические элементы в тот же период имеют тенденцию иметь атомные (ковалентные) радиусы меньше, чем металлы (металлические радиусы).

По убыванию группой

При спуске по группе включаются новые уровни энергии, которые позволяют электронам иметь больше места. Таким образом, электронное облако преодолевает большие расстояния, его размытая периферия все больше отдаляется от ядра, и, следовательно, радиус атома расширяется.

Сокращение лантаноидов

Электроны внутреннего слоя помогают экранировать эффективный заряд ядра на валентных электронах. Когда орбитали, составляющие внутренние слои, имеют много «дырок» (узлов), как и в случае f-орбиталей, ядро ​​сильно сжимает атомный радиус из-за плохого экранирующего эффекта орбиталей..

Этот факт подтверждается сокращением лантаноидов в период 6 периодической таблицы. От La до Hf происходит значительное сжатие атомного радиуса, создаваемого орбиталями f, которые «заполняются» при прохождении через блок f: у лантаноидов и актиноидов.

Аналогичный эффект можно наблюдать и с элементами блока p периода 4. На этот раз произведение слабого экранирующего эффекта орбиталей d, которые заполняются при пересечении периодов переходных металлов..

примеров

Для периода 2 периодической таблицы атомные радиусы ее элементов:

Обратите внимание, что металлический литий имеет наибольший атомный радиус (257 мкм), в то время как фтор, расположенный в крайней правой части периода, является наименьшим из них (64 мкм). Атомный радиус уменьшается слева направо за тот же период, и перечисленные значения показывают его.

Литий, образуя металлические связи, его радиус металлический; и фтор, поскольку он образует ковалентные связи (F-F), его радиус является ковалентным.

А если вы хотите выразить атомные радиостанции в единицах ангстрема? Просто разделите их на 100: (257/100) = 2,57Å. И так далее с остальными ценностями.

Источник

Периодический закон

Периодический закон был открыт Д.И. Менделеевым в 1868 году. Его современная формулировка: свойства химических элементов и образуемых ими соединений (простых и сложных) находятся в периодической зависимости от величины заряда атомного ядра.

Периодический закон лежит в основе современного учения о строении вещества. Периодическая система Д.И. Менделеева является наглядным отражением периодического закона.

как узнать радиус атома. 1526. как узнать радиус атома фото. как узнать радиус атома-1526. картинка как узнать радиус атома. картинка 1526.

Группой называют вертикальный ряд химических элементов в периодической таблице. Элементы собраны в группы на основе степени окисления в высшем оксиде. Каждая из восьми групп состоит из главной подгруппы (а) и побочной подгруппы (б).

Периодическая таблица Д.И. Менделеева содержит колоссальное число ответов на самые разные вопросы. При умелом ее использовании вы сможете предполагать строение и свойства веществ, успешно писать химические реакции и решать задачи.

как узнать радиус атома. 1527. как узнать радиус атома фото. как узнать радиус атома-1527. картинка как узнать радиус атома. картинка 1527.

Радиус атома

Радиусом атома называют расстояние между атомным ядром и самой дальней электронной орбиталью. Это не четкая, а условная граница, которая говорит о наиболее вероятном месте нахождения электрона.

В периоде радиус атома уменьшается с увеличением порядкового номера элементов («→» слева направо). Это связано с тем, что с увеличением номера группы увеличивается число электронов на внешнем уровне. Запомните, что для элементов главных подгрупп номер группы равен числу электронов на внешнем уровне.

С увеличением числа электронов они становятся более скученными, так как притягиваются друг к другу сильнее: это и есть причина маленького радиуса атома.

Чем меньше электронов, тем больше у них свободы и больше радиус атома, поэтому радиус увеличивается в периоде «←» справа налево.

как узнать радиус атома. 1528. как узнать радиус атома фото. как узнать радиус атома-1528. картинка как узнать радиус атома. картинка 1528.

как узнать радиус атома. 1529. как узнать радиус атома фото. как узнать радиус атома-1529. картинка как узнать радиус атома. картинка 1529.

Период, группа и электронная конфигурация

Правило составления электронной конфигурации, которое вы только что увидели, универсально. Если вы имеете дело с элементом главной подгруппы, то увидев номер группы вы знаете, сколько электронов у него на внешнем уровне. Посмотрев на период, знаете номер его внешнего уровня.

как узнать радиус атома. 1530. как узнать радиус атома фото. как узнать радиус атома-1530. картинка как узнать радиус атома. картинка 1530.

Длина связи

Убедимся в этом на наглядном примере, сравнив длину связей в четырех веществах: HF, HCl, HBr, HI.

как узнать радиус атома. 1531. как узнать радиус атома фото. как узнать радиус атома-1531. картинка как узнать радиус атома. картинка 1531.

Чем больше радиусы атомов, которые образуют химическую связь, тем больше между ними и длина связи. Радиус атома водорода неизменен во всех трех веществах, а в ряду F → Cl → Br → I происходит увеличение радиуса атома. Наибольшим радиусом обладает йод, поэтому самая длинная связь в молекуле HI.

Металлические и неметаллические свойства

как узнать радиус атома. 1532. как узнать радиус атома фото. как узнать радиус атома-1532. картинка как узнать радиус атома. картинка 1532.

Сравним металлические и неметаллические свойства Rb, Na, Al, S. Натрий, алюминий и сера находятся в одном периоде. Металлические свойства возрастают S → Al → Na. Натрий и рубидий находятся в одной группе, металлические свойства возрастают Na → Rb.

как узнать радиус атома. 1533. как узнать радиус атома фото. как узнать радиус атома-1533. картинка как узнать радиус атома. картинка 1533.

Основные и кислотные свойства

как узнать радиус атома. 1534. как узнать радиус атома фото. как узнать радиус атома-1534. картинка как узнать радиус атома. картинка 1534.

Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. В ряду галогенводородных кислот HF → HCl → HBr → HI происходит усиление кислотных свойств (а не ослабление, как должно быть по логике нашего правила).

как узнать радиус атома. 1535. как узнать радиус атома фото. как узнать радиус атома-1535. картинка как узнать радиус атома. картинка 1535.

Восстановительные и окислительные свойства

как узнать радиус атома. 1536. как узнать радиус атома фото. как узнать радиус атома-1536. картинка как узнать радиус атома. картинка 1536.

Электроотрицательность (ЭО), энергия связи, ионизации и сродства к электрону

как узнать радиус атома. 1537. как узнать радиус атома фото. как узнать радиус атома-1537. картинка как узнать радиус атома. картинка 1537.

Для примера сравним ЭО-ость атомов Te, In, Al, P. Индий расположен в одной группе с алюминием, ЭО-ость In → Al возрастает (снизу вверх). Алюминий расположен в одном периоде с серой, ЭО-ость возрастает Al → S (слева направо). Сравнивая серу и теллур, мы видим, что сера расположена в группе выше теллура, значит и ее электроотрицательность тоже выше.

Энергия связи (а также ее прочность) возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на себя электроны (чем больше он ЭО-ый), тем прочнее получается связь, которую он образует.

Продемонстрирую на примере. Сравним энергию связи в трех молекулах: H2O, H2S, H2Se.

как узнать радиус атома. 1538. как узнать радиус атома фото. как узнать радиус атома-1538. картинка как узнать радиус атома. картинка 1538.

Высшие оксиды и летучие водородные соединения (ЛВС)

В периодической таблице Д.И. Менделеева ниже 7 периода находится строка, в которой для каждой группы указаны соответствующие высшие оксиды, ниже строка с летучими водородными соединениями.

как узнать радиус атома. 1526. как узнать радиус атома фото. как узнать радиус атома-1526. картинка как узнать радиус атома. картинка 1526.

Для элементов главных подгрупп начиная с IV группы (в большинстве случае) максимальная степень окисления (СО) определяется по номеру группы. К примеру, для серы (в VI группе) максимальная СО = +6, которую она проявляет в соединениях: H2SO4, SO3.

На экзамене строка с готовыми «высшими» оксидами, как в таблице наверху, может отсутствовать. Считаю важным подготовить вас к этому. Предположим, что эта строчка внезапно исчезла из таблицы, и вам нужно записать высшие оксиды для фосфора и углерода.

как узнать радиус атома. 1539. как узнать радиус атома фото. как узнать радиус атома-1539. картинка как узнать радиус атома. картинка 1539.

С летучими водородными соединениями (ЛВС) ситуация аналогичная: их может не быть в периодической таблице Д.И. Менделеева, которая попадется на экзамене. Я расскажу вам, как легко их запомнить.

как узнать радиус атома. 1540. как узнать радиус атома фото. как узнать радиус атома-1540. картинка как узнать радиус атома. картинка 1540.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Определение радиусов атомов и ионов

Применение рентгеновых лучей к исследованию кристаллов дает возможность не только устанавливать внутреннее строение последних, но и определять размеры частиц, образующих кристалл, — атомов или ионов.

Чтобы понять, как производятся такие вычисления, представим себе, что частицы, из которых построен кристалл, имеют сферическую форму и соприкасаются друг с другом. В таком случае мы можем считать, что расстояние между центрами двух соседних частиц равно сумме их радиусов (рис.).

Если частицами являются атомы простого вещества и расстояние между ними измерено, то тем самым определяется и радиус атома, очевидно, равный половине найденного расстояния. Например, зная, что для кристаллов металлического натрия константа решетки d равна 3,84 ангстрема, находим, что радиус r атома натрия равен.

как узнать радиус атома. SAM 169211 2. как узнать радиус атома фото. как узнать радиус атома-SAM 169211 2. картинка как узнать радиус атома. картинка SAM 169211 2.

Несколько сложнее производится определение радиусов различных ионов. Здесь уже нельзя просто делить расстояние между ионами пополам, так как размеры ионов неодинаковы. Но если радиус одного из ионов r 1 известен, то радиус другого r2 легко находится простым вычитанием:

Отсюда следует, что для вычисления радиусов различных ионов по константам кристаллических решеток нужно знать радиус хотя бы какого-нибудь одного иона. Тогда нахождение радиусов всех остальных ионов уже не представит затруднений.

Как определяют радиусы атомов и ионов

При помощи оптических методов удалось довольно точно определить радиусы ионов фтора F — (1,33 А) и кислорода O — (1,32 А); эти радиусы и служат исходными величинами при вычислении радиусов других ионов. Так, например, определение константы решетки окиси магния MgO показало, что она равна 2,1 ангстрема. Вычитая отсюда величину радиуса иона кислорода, находим радиус иона магния:

Константа решетки фтористого натрия равняется 2,31 Å; так как радиус иона фтора 1,33 ангстрема, то радиус иона натрия должен равняться:

Зная радиус иона натрия и константу решетки хлористого натрия, легко рассчитать радиус иона хлора и т. д.

Таким путем определены радиусы почти всех атомов и ионов.

Общее представление о размерах этих величин дают данные, приведенные в табл. 7.

Радиусы атомов и ионов некоторых элементов

ЭлементРадиус атомаРадиус ионаСимвол иона
Натрий1,920,98Na+
Калий2,381,33К +
Рубидий2,511,49Rb+
Цезий2,701,65Cs+
Магний1,600,78Mg++
Кальций1,971,06Са++
Барий2,241,43Ва++
Фтор0,671,33F-
Хлор1,071,81Сl-
Бром1,191,96Вr-
Йод1,362,20J-
Сера1,041,74S—

Как показывают эти данные, у металлов радиусы атомов больше, чем радиусы ионов, у металлоидов, наоборот, радиусы ионов больше, чем радиусы атомов.

Относительные размеры ионов, образующих кристалл, оказывают огромное влияние на структуру пространственной решетки. Так, например, два очень сходных по своей химической природе вещества — CsCl и NaCl тем не менее образуют решетки различного типа, причем в первом случае каждый положительный ион окружен восьмью отрицательными ионами, а во втором — только шестью. Это различие объясняется тем, что размеры ионов цезия и натрия неодинаковы.

Число отрицательных ионов, окружающих каждый положительный ион в кристалле, называется координационным числом данной решетки. Изучение структуры различных кристаллов показывает, что наиболее часто встречаются следующие координационные числа: 2, 3, 4, 6, 8 и 12.

Координационное число зависит от отношения радиуса положительного иона к радиусу отрицательного иона: чем ближе это отношение к единице, тем больше координационное число. Рассматривая ионы как шары, расположенные в кристалле по способу наиболее плотной упаковки, можно рассчитать, при каком соотношении между радиусом положительного и отрицательного ионов должно получиться то или иное координационное число.

Определение координационного числа

Ниже приведены вычисленные теоретически наибольшие координационные числа для данного отношения радиусов.

Нетрудно убедиться, что координационные числа для NaCl и CsCl, найденные по этой таблице, как раз отвечают действительному расположению ионов в кристаллах указанных веществ.

Например, в случае NаСl отношение радиуса иона натрия (0,98 Å) к радиусу иона хлора (1,81 Å) равно 0,98:1,81 =0,54. Это отношение лежит в пределах 0,41—0,73; следовательно, в решетке NaCl координационное число должно равняться шести.

Вы читаете, статья на тему Определение радиусов атомов и ионов

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *