как узнать скорость падения
Свободное падение тел
Ускорение свободного падения
Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.
Ускорение свободного падения
Свободное падение тела
Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его.
Так как начальна скорость равна нулю, перепишем:
Отсюда находится выражение для времени падения тела с высоты h :
Движение тела, брошенного вертикально вверх
Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.
Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:
Максимальная высота подъема тела, брошенного вертикально:
Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.
Движение тела, брошенного под углом к горизонту
С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.
Условия для движения вдоль оси О Х :
Условия для движения вдоль оси O Y :
Приведем формулы для движения тела, брошенного под углом к горизонту.
Дальность полета тела:
Максимальная высота подъема:
Падение тел
Свободное падение представляет собой частный случай равномерно ускоренного движения без начальной скорости. Ускорение этого движения равно ускорению свободного падения, называемого также ускорением силы тяжести. Для этого движения справедливы формулы:
u — скорость падения тела спустя время t
g — ускорение свободного падения, 9.81 (м/с?)
h — высота с которой падает тело
t — время, в течение которого продолжалось падение
Движение тела, брошенного вертикально вверх
Тело, брошенное вертикально вверх, движется равномерно замедленно с начальной скоростью u0 и ускорением a = -g. Перемещение тела за время t представляет собой высоту подъема h.Для этого движения справедливы формулы:
U0 — начальная скорость движения тела
U — скорость падения тела спустя время t
g — ускорение свободного падения, 9.81 (м/с?)
h — высота на которую поднимется тело за время t
t — время
Скорость тела на некоторой высоте:
Максимальная высота подъёма тела:
Время подъёма на максимальную высоту:
Сложение движений, направленных под углом друг к другу.
Тело может одновременно участвовать в нескольких поступательных движениях. Поскольку ускорение, скорость и перемещение являются векторными величинами, их можно складывать по законам векторного (геометрического) сложения. Т.е. по правилу параллелограмма.
Величину результирующей любой характеристики движения можно вычислить.
Если:
Up — результирующая мгновенная скорость,
U1 — мгновенная скорость первого движения,
U2 — мгновенная скорость второго движения,
? — угол, образуемый векторами скоростей u1 и u2,
То по теореме косинусов получим:
Если движения 1 и 2 происходят под прямым углом друг к другу, то формула упрощается поскольку
Движение тела, брошенного горизонтально.
Движение тела, брошенного горизонтально, представляет собой комбинацию двух движений, взаимно перпендикулярных друг другу:
— горизонтального (равномерного) движения,
— вертикального (свободного падения)
Уравнение траектории тела, брошенного горизонтальн
Если построить траекторию движения тела, брошенного горизонтально, в системе координат xy, приняв за начало отсчета координат точку бросания, а направление оси ординат совпадающим с направлением вектора ускорения свободного падения, то координаты каждой точки траектории представляют собой перемещение тела в горизонтальном направлении (движение с постоянной скоростью U0) и в вертикальном направлении (равномерно ускоренное движение с ускорением g)
x, y — координаты тела,
u0 — начальная скорость тела (м/с),
g — ускорение свободного падения 9.81 (м/c2),
t — время движения (c)
Уравнение траектории тела, брошенного горизонтальновыглядит следующим образом:
Так как ускорение свободного падения g и начальная скорость тела u0 — постоянные величины, то координата yпропорциональна квадрату x, т.е. траектория движения представляет собой параболу, вершина которой находится в начальной точке движения.
Вектор положения тела брошенного горизонтально, формула
Положение каждой точки траектории тела брошенного горизонтально можно задать вектором положения r, который представляет собой результирующее перемещение:
или Вектор положения:
Координата по оси x:
Координата по оси y:
Примечание: Сопротивление воздуха в формулах не учитывается.
Уравнение движения тела, брошенного под углом к горизонту.
Координаты точки траектории описываются уравнениями:
x, y — координаты тела
U0 — начальная скорость тела (м/с)
? — угол, под которым брошено тело к горизонту (°)
g — ускорение свободного падения 9.81 (м/c2)
t — время движения (c)
Из формул через параметр t выводится общее уравнение движения тела, брошенного под углом к горизонту
Так как ускорение свободного падения g, ? — угол, под которым брошено тело к горизонту и начальная скорость тела u0 —постоянные величины, то координата y пропорциональна квадрату x, т.е. траектория движения представляет собой параболу, начальная точка находится на одной из ее ветвей, а вершина параболы, есть точка максимального подъема тела.
Время подъема на максимальную высоту, тела, брошенного под углом к горизонту.
Время подъема на максимальную высоту определяется из условия, что вертикальная составляющая мгновенной скорости равна нулю
из этого уравнения получаем:
U0 — начальная скорость тела (м/с),
? — угол, под которым брошено тело к горизонту (°),
g — ускорение свободного падения 9.81 (м/c2),
thmax — время подъема на максимальную высоту (c)
Дальность броска тела, брошенного под углом к горизонту.
Дальность броска или радиус поражения определяется по формулам общего времени движения и формулы координат тела
подставив tsmax в выражение и упростив получим:
U0 — начальная скорость тела (м/с),
? — угол, под которым брошено тело к горизонту (°),
g — ускорение свободного падения 9.81 (м/c2),
tsmax — общее время движения(c)
Определение скорости свободного падения
Свободное падение тела — это его равнопеременное движение, которое происходит под действием силы тяжести. В этот момент другие силы, которые могут воздействовать на тело либо отсутствуют, либо настолько малы, что их влияние не учитывается. Например, когда парашютист прыгает из самолета, первые несколько секунд после прыжка он падает в свободном состоянии. Этот короткий отрезок времени характеризуется ощущением невесомости, сходным с тедж.м, что испытывают космонавты на борту космического корабля.
История открытия явления
О свободном падении тела ученые узнали еще в Средневековье: Альберт Саксонский и Николай Орем изучали это явление, но некоторые их выводы были ошибочными. Например, они утверждали, что скорость падающего тяжелого предмета возрастает прямо пропорционально пройденному расстоянию. В 1545 году поправку этой ошибки сделал испанский ученый Д. Сото, установивший факт, что скорость падающего тела увеличивается пропорционально времени, которое проходит от начала падения этого предмета.
В 1590 г. итальянский физик Галилео Галилей сформулировал закон, который устанавливает четкую зависимость пройденного падающим предметом пути от времени. Также ученым было доказано, что при отсутствии воздушного сопротивления все предметы на Земле падают с одинаковым ускорением, хотя до его открытия было принято считать, что тяжелые предметы падают быстрее.
Была открыта новая величина — ускорение свободного падения, которое состоит из двух составляющих: гравитационного и центробежного ускорений. Обозначается ускорение свободного падения буквой g и имеет различное значение для разных точек земного шара: от 9,78 м/с 2 (показатель для экватора) до 9,83 м/с 2 (значение ускорения на полюсах). На точность показателей влияют долгота, широта, время суток и некоторые другие факторы.
Для того чтобы продемонстрировать, как предмет падает в соответствии с открытием Галилея, ученые устраивают такой опыт: в длинную стеклянную трубку помещают предметы с различной массой, из трубки выкачивают воздух. После этого трубку переворачивают, все предметы под действием силы тяжести падают одновременно на дно трубки, независимо от их массы.
Когда эти же предметы помещены в какую-либо среду, одновременно с силой тяжести на них действует сила сопротивления, поэтому предметы в зависимости от своей массы, формы и плотности будут падать в разное время.
Формулы для расчетов
Существуют формулы, с помощью которых можно рассчитывать различные показатели, связанные со свободным падением. В них используются такие условные обозначения:
Формула для определения расстояния, пройденного падающим предметом при известной конечной скорости и времени падения: h = ut /2.
Формула для расчета расстояния, пройденного падающим предметом по постоянной величине g и времени: h = gt 2 /2.
Формула для расчета скорости предмета в конце падения, если известна высота, с которой падает исследуемый предмет: u = √2 gh.
Интересные факты
Если не углубляться в научные знания, бытовое определение свободного перемещения подразумевает передвижение какого-либо тела в земной атмосфере, когда на него не воздействуют никакие посторонние факторы, кроме сопротивления окружающего воздуха и силы тяжести.
В различное время добровольцы соревнуются между собой, пытаясь установить личный рекорд. В 1962 г. испытатель-парашютист из СССР Евгений Андреев установил рекорд, который был занесен в Книгу рекордов Гиннеса: при прыжке с парашютом в свободном падении он преодолел расстояние в 24500 м, во время прыжка не был использован тормозной парашют.
В 1960 г. американец Д. Киттингер совершил парашютный прыжок с высоты 31 тыс. м, но с использованием парашютно-тормозной установки.
В 2005 г. была зафиксирована рекордная скорость при свободном падении — 553 км/ч, а через семь лет установлен новый рекорд — эта скорость была увеличена до 1342 км/ч. Этот рекорд принадлежит австрийскому парашютисту Феликсу Баумгартнеру, который известен во всем мире своими опасными трюками.
Видео
Посмотрите интересное и познавательное видео, которое расскажет вам о скорости падения тел.
Движение тела с ускорением свободного падения
теория по физике 🧲 кинематика
Свободное падение — это движение тела только под действием силы тяжести.
В действительности при падении на тело действует не только сила тяжести, но и сила сопротивления воздуха. Но в ряде задач сопротивлением воздуха можно пренебречь. Воздух не оказывает значимого сопротивления падающему мячу или тяжелому грузу. Но падение пера или листа бумаги можно рассматривать только с учетом двух сил: небольшая масса тела в сочетании с большой площадью его поверхности препятствует свободному падению вниз.
В вакууме все тела падают с одинаковым ускорением, так как в нем отсутствует среда, которая могла бы дать сопротивление. Так, брошенные в условиях вакуума с одинаковой высоты перо и молоток приземлятся в одно и то же время!
Ускорение свободного падения
Свободное падение
Свободное падение — частный случай равноускоренного прямолинейного движения. Если тело отпустить с некоторой высоты, оно будет падать с ускорением свободного падения без начальной скорости. Тогда его кинематические величины можно определить по следующим формулам:
v — скорость, g — ускорение свободного падения, t — время, в течение которого падало тело
Пример №1. Тело упало без начальной скорости с некоторой высоты. Найти его скорость в конечный момент времени t, равный 3 с.
Подставляем данные в формулу и вычисляем:
Перемещение при свободном падении тела равно высоте, с которой оно начало падать. Высота обозначается буквой h.
Внимание! Перемещение равно высоте, с которой падало тело, только в том случае, если t — полное время падения.
Если известна скорость падения тела в момент времени t, перемещение (высота) определяется по следующей формуле.
Если скорость тела в момент времени t неизвестна, но для нахождения перемещения (высоты) используется формула:
Если неизвестно время, в течение которого падало тело, но известна его конечная скорость, перемещение (высота) вычисляется по формуле:
Пример №2. Тело упало с высоты 5 м. Найти его скорость в конечный момент времени.
Так как нам известна только высота, и найти нужно скорость, используем для вычислений последнюю формулу. Выразим из нее скорость:
Формула определения перемещения тела в n-ную секунду свободного падения:
s(n) — перемещение за секунду n.
Пример №3. Определить перемещение свободно падающего тела за 3-ую секунду движения.
Движение тела, брошенного вертикально вверх
Движение тела, брошенного вертикально вверх, описывается в два этапа
Два этапа движения тела, брошенного вертикально вверх Этап №1 — равнозамедленное движение. Тело поднимается вверх на некоторую высоту h за время t с начальной скоростью v0 и на мгновение останавливается в верхней точке, достигнув скорости v = 0 м/с. На этом участке пути векторы скорости и ускорения свободного падения направлены во взаимно противоположных направлениях ( v ↑↓ g ). Этап №2 — равноускоренное движение. Когда тело достигает верхней точки, и его скорость равна 0, начинается свободное падение с начальной скоростью до тех пор, пока тело не упадет или не будет поймано на некоторой высоте. На этом участке пути векторы скорости и ускорения свободного падения направлены в одну сторону ( v ↑↑ g ). Формулы для расчета параметров движения тела, брошенного вертикально вверх Перемещение тела, брошенного вертикально вверх, определяется по формуле:
Если известна скорость в момент времени t, для определения перемещения используется следующая формула:
Если время движения неизвестно, для определения перемещения используется следующая формула:
Формула определения скорости:
Какой знак выбрать — «+» или «–» — вам помогут правила:
Обычно тело бросают вертикально вверх с некоторой высоты. Поэтому если тело упадет на землю, высота падения будет больше высоты подъема (h2 > h1). По этой же причине время второго этапов движения тоже будет больше (t2 > t1). Если бы тело приземлилось на той же высоте, то начальная скорость движения на 1 этапе была бы равно конечной скорости движения на втором этапе. Но так как точка приземления лежит ниже высоты броска, модуль конечной скорости 2 этапа будет выше модуля начальной скорости, с которой тело было брошено вверх (v2 > v01).
Пример №4. Тело подкинули вверх на некотором расстоянии 2 м от земли, придав начальную скорость 10 м/с. Найти высоту тела относительно земли в момент, когда оно достигнет верхней точки движения.
Конечная скорость в верхней точке равна 0 м/с. Но неизвестно время. Поэтому для вычисления перемещения тела с точки броска до верхней точки найдем по этой формуле:
Согласно условию задачи, тело бросили на высоте 2 м от земли. Чтобы найти высоту, на которую поднялось тело относительно земли, нужно сложить эту высоту и найденное перемещение: 5 + 2 = 7 (м).
Уравнение координаты и скорости при свободном падении
Уравнение координаты при свободном падении позволяет вычислять кинематические параметры движения даже в случае, если оно меняет свое направление. Так как при вертикальном движении тело меняет свое положение лишь относительно оси ОУ, уравнение координаты при свободном падении принимает вид :
Уравнение скорости при свободном падении:
Построение чертежа
Решать задачи на нахождение кинематических параметров движения тела, брошенного вертикально вверх, проще, если выполнить чертеж. Строится он в 3 шага.
Свободное падение на землю с некоторой высоты
Тело подбросили от земли и поймали на некоторой высоте
Уравнение скорости:
Тело подбросили от земли, на одной и той же высоте оно побывало дважды
Интервал времени между моментами прохождения высоты h:
Уравнение координаты для первого прохождения h:
Уравнение координаты для второго прохождения h:
Важно! Для определения знаков проекций скорости и ускорения нужно сравнивать направления их векторов с направлением оси ОУ.
Пример №5. Тело падает из состояния покоя с высоты 50 м. На какой высоте окажется тело через 3 с падения?
Из условия задачи начальная скорость равна 0, а начальная координата — 50.
Через 3 с после падения тело окажется на высоте 5 м.
Алгоритм решения
Решение
Записываем исходные данные:
Перемещение (высота) свободно падающего тела, определяется по формуле:
В скалярном виде эта формула примет вид :
Учтем, что начальная скорость равна нулю, а ускорение свободного падения противоположно направлено оси ОУ:
Относительно оси ОУ груз совершил отрицательное перемещение. Но высота — величина положительная. Поэтому она будет равна модулю перемещения:
Вычисляем высоту, подставив известные данные:
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алгоритм решения
Решение
Записываем исходные данные:
Записываем формулу для определения скорости тела в векторном виде:
Теперь запишем эту формулу в скалярном виде. Учтем, что согласно чертежу, вектор скорости сонаправлен с осью ОУ, а вектор ускорения свободного падения направлен в противоположную сторону:
Подставим известные данные и вычислим скорость:
pазбирался: Алиса Никитина | обсудить разбор | оценить