Бактерии являются прокариотами потому что
Бактерии-прокариоты – живые «кирпичики» эволюции
Первые живые организмы (прокариоты), послужившие исходным материалом для эволюции жизни на Земле, имели очень примитивное строение. Бактерии относят к прокариотам, поскольку у них нет ядра и других органелл, присущих более развитым формам жизни.
Представители царства прокариотов
Название «прокариоты» происходит от древнегреческих слов «перед» и «ядро», т. е. это организмы, существовавшие еще до появления в клетках ядер. Это своеобразные предки эукариотов – видов, которые имеют оформленное клеточное ядро.
Прокариоты – это одноклеточные бактерии, в которых нет четко оформленного ядра клетки, ограниченного ядерной оболочкой, и дополнительных мембранных органоидов. Вместо этого прокариоты используют структуру, состоящую из ДНК (дезоксирибонуклеиновой кислоты), белков и РНК (рибонуклеиновой кислоты).
Исключение составляют фотосинтезирующие организмы, например, цианобактерии (сине-зеленые водоросли), которые имеют плоские цистерны – мембранная структура, обеспечивающая процесс жизнедеятельности клетки. Эта группа бактерий содержит зеленые и синие пигменты и участвует в процессе фотосинтеза, насыщая атмосферу кислородом.
Еще один представитель царства прокариотов – археи (лат. «древний, первозданный»). Эти одноклеточные бактерии интересны не только тем, что у них нет ядра, но и особенностями питания. Так, они могут существовать и находить пищу в самых экстремальных условиях – в горячих источниках и соленых озерах. Археи широко распространены в океанах, почве, болотах, даже в организме человека. Эти бактерии играют одну из ведущих ролей в круговороте углерода и азота на нашей планете.
Итак, к прокариотам относятся все бактерии, включая сине-зеленые водоросли и археи. Некоторые ученые относят к царству прокариотов и вирусы, но общего мнения на их счет пока не существует, так как некоторые биологи не считают вирусы живыми организмами.
Считается, что прокариоты появились около 3,5 млрд лет назад, и только через 2,5 млрд лет после них возникли первые эукариотные клетки. Все микроорганизмы, входящие в царство прокариотов, так или иначе способствовали созданию и поддержанию жизни на Земле.
Характеристика и строение
В среднем размер клетки-прокариота от 1 до 10 мкм. Мы уже знаем, что бактерии – это прокариоты, у которых нет клеточного ядра. Вместо него в клетке находится единственная крупная кольцевая или линейная молекула ДНК. Эта молекула содержит основную часть генетического материала клетки и называется нуклеоид («подобный ядру»). Прокариоты считают предками митохондрий и пластид – энергетических станций клеток эукариотов.
Нити ДНК и белки (гистоны) в прокариотических клетках не взаимодействуют, в отличие от клеток эукариот. Однако, по аналогии, комплекс ДНК и белков называют хромосомой. Хромосома прокариота крепится к мембране клетки, как правило, в одной точке. При удвоении хромосомы копии расходятся в разные стороны, образуя новые клетки, т.е. размножаются простым делением.
В отличие от эукариотов в этих микроорганизмах нет митохондрий, эндоплазматической сети и других органоидов. То есть как более примитивные организмы прокариоты не содержат тех мембранных структур, которые упорядочивают строение эукариотов.
Среда обитания прокариотов практически ничем не ограничена. Выживать в любых условиях бактериям помогают особенности их способов получения пищи:
Клетки прокариотов могут иметь различную форму: прямые или изогнутые палочки, шарики. Часто их клетки образуют колонии в виде нити или грозди, могут быть неподвижными или передвигаться с помощью жгутиков.
Эукариоты и прокариоты различаются настолько сильно, что ученые-систематики относят их к самым крупным подразделениям живой природы – царствам.
Поставщики кислорода и азота
Одним из ярких представителей царства прокариотов являются цианобактерии (сине-зеленые водоросли). Эти бактерии считают наиболее близкими к первым ископаемым микроорганизмам, найденным учеными. Возраст предков сине-зеленых водорослей составляет примерно 3,5 млрд лет.
Сине-зеленые водоросли – это единственные бактерии, способные выделять кислород. Правда, для самих водорослей это побочный продукт, но для существования жизни на нашей планете это одно из основных условий.
Сине-зеленые водоросли очень сложно организованы и имеют различные формы и размеры. Эти микроорганизмы способны даже менять свой цвет от темно-синего до светло-зеленого в зависимости от спектрального состава света.
Кроме способности выделять кислород, сине-зеленые водоросли имеют еще одну очень полезную черту – они могут связывать атмосферный азот и делать его доступным для других живых организмов. Эта последняя способность делает сине-зеленые водоросли незаменимыми для всех растений, которые не могут самостоятельно добывать азот из окружающей среды.
Вирусы – живая или неживая материя?
Вирусы поражают все типы живых организмов: растения, животных, бактерии, даже сами вирусы. Вирусы бактерий называют бактериофагами, а вирусы других вирусов – вирусы-сателлиты (простите за тавтологию).
Вирусы относят к неклеточной форме жизни. Они занимают положение между живой и неживой материей. У вирусов нет цитоплазмы и других клеточных органоидов. Отсутствие собственного обмена веществ роднит вирусы с неживой природой.
Вместе с тем вирусы отлично живут и размножаются внутри клеток других организмов, что делает их схожими с живыми существами. Но вне клетки-хозяина вирус существует только в кристаллической форме.
При изучении особенностей строения и поведения вирусов становится понятно, почему наука никак не определится с их принадлежностью.
Царство грибов
Грибы относят к эукариотам, но по размеру генома они приближаются к прокариотам. То есть в клетках грибов есть ядро с ДНК-структурой, но процесс передачи генной информации может происходить и при помощи вирусов. Размер генома грибов и размер хромосом значительно меньше, чем у других видов эукариотов.
Точное определение царства грибов отсутствует, но их изучение необходимо для понимания эволюции жизни на Земле.
Горизонтальный перенос генов
Впервые этот процесс был описан в Японии в 1959 г. Горизонтальный перенос генов имеет широкое распространение в царстве прокариотов и даже у некоторых эукариотных клеток. В отличие от привычного нам вертикального переноса генов (от предка к потомку) смысл горизонтального процесса заключается в передаче генного материала организму, не являющемуся потомком исходной клетки. Именно такой принцип использует современная генная инженерия.
Открытие такого обмена генным материалом повлияло на учение об эволюции жизни. Раньше ученые считали, что виды не могут обмениваться наследственной информацией между собой. Однако прокариоты передают генную информацию как самостоятельно, так и с помощью вирусов-бактериофагов. То есть в прошлом нашей планеты, населенной древними микроорганизмами, существовал массированный перенос генетической информации, что не могло не повлиять на то, каким путем пошел процесс эволюции на Земле.
Образование высшее филологическое. В копирайтинге с 2012 г., также занимаюсь редактированием/размещением статей. Увлечения — психология и кулинария.
Почему бактерии прокариоты?
Строение
В среднем, размер прокариотической клетки составляет 0,5−5 мкм. Первые бактерии были открыты голландским учёным Антони ван Левенгуком, который увидел их в примитивный микроскоп.
Чаще всего встречаются следующие формы бактерий:
Видео
Типы микроорганизмов
Бактерии – простейшие безъядерные организмы, которые отличаются высокой приспособляемостью к окружающей среде. Такая приспособляемость объясняется простым устройством бактерии, которое позволяет оперативно реагировать на внешние раздражители.
Разнообразие внешних раздражителей и условий стало причиной существования колоссального количества биологических видов бактерий, но это не значит, что можно выделить биологические типы бактерий. Тип у этого явления окружающей действительности один – безъядерный организм.
Если говорить о биологических типах организмов как о единицах классификации, то они широко применяются только в зоологии. Для бактерий определение типа будет не совсем корректным, после таксономической единицы «царство» бактерии классифицируются по классам.
Другое дело, что каждый вид бактерий использует ряд внутренних процессов и имеет ряд морфологических характеристик, которые отличают его от одних видов прокариотов и роднят с другими. Вот эти процессы и становятся основой для классификации отдельных жизненно важных систем прокариотов по определенным типам. К таким типам относятся:
Чаще всего микроорганизмы с одним типом дыхания, питания, метаболизма или размножения относятся к какой-либо одной группе бактерий по данному признаку, но нередки случаи, когда только на основании схожести перечисленных типов внутренних механизмов невозможно установить родство микроорганизмов или принадлежность их к одной биологической группе.
Также иногда бактерий типизируют по видам секреции. Имеются ли в продуктах секреции токсичные вещества, или секреция полностью безопасна для человека. Наиболее опасные для человека микробы вырабатывают через механизм секреции очень сильные яды.
Типизация внутренних процессов выступает как вспомогательный инструмент при классификации бактериальных культур, а основное же деление осуществляется по данным исследования наследственной информации, которая накапливается в генах бактерий.
Говорить о типах бактерии не совсем правильно, типы внутренних механизмов, обеспечивающих жизнь бактерии, – вот более точная классификация явлений, имеющих значение для жизни бактерий.
Царство грибов
Грибы относят к эукариотам, но по размеру генома они приближаются к прокариотам. То есть в клетках грибов есть ядро с ДНК-структурой, но процесс передачи генной информации может происходить и при помощи вирусов. Размер генома грибов и размер хромосом значительно меньше, чем у других видов эукариотов.
Точное определение царства грибов отсутствует, но их изучение необходимо для понимания эволюции жизни на Земле.
Чем опасно заражение паразитами
Бактерии паразиты. У мужчин паразиты вызывают: простатит, импотенцию, аденому, цистит, песок, камни в почках и мочевом пузыре. У женщин: боли и воспаление яичников, развиваются фиброма, миома, фиброзно-кистозная мастопатия, воспаление надпочечников, мочевого пузыря и почек. Ну и конечно же происходит преждевременное старение кожи, появляются морщины, мешки под глазами, бородавки и папилломы на лице и теле.
И тут возникает закономерный вопрос: как защитить себя от паразитов? Существуют какие-то средства, анализы, лекарства? К сожалению, можно констатировать, что на сегодняшний день не существует каких-то действительно точных инструментов для диагностики паразитов внутри человека, а те, которые есть — довольно туманны и дорогие. Отчасти, это связано с наличием громадного количества видов паразитов (более 2000 видов о которых сейчас известно), а отчасти, с крайне высоким уровнем сложности их обнаружения. Процедура полного анализа на паразитов в России доступна буквально в нескольких местах и стоит громадных денег.
Если количество и размер паразитов невелики, их наличие долго может оставаться незамеченным, однако быстрое размножение или рост паразитов, их перемещение по организму в течение жизненного цикла часто является причиной развития серьёзных проблем со здоровьем.
Например, аскариды, скопившиеся в кишечнике, могут вызвать запоры и непроходимость. Бычий цепень вырастает до нескольких метров в длину и серьёзно повреждает пищеварительный тракт, лишает хозяина питательных веществ и витаминов.
Эхинококк образует кисты во внутренних органах, в том числе в головном мозге, печени, лёгких. Разрыв такой кисты может произойти неожиданно, после лёгкой травмы или во время обследования. Содержимое кисты способно вызвать анафилактический шок или коллапс. Личинки трихинеллы питаются и живут в мышцах, постепенно разрушая их. По данным ВОЗ на паразитарные заболевания приходится около 14 млн смертей в мире за год.
История понятия
Монеры
В настоящее время термин «монеры» не применяется.
Поставщики кислорода и азота
Одним из ярких представителей царства прокариотов являются цианобактерии (сине-зеленые водоросли). Эти бактерии считают наиболее близкими к первым ископаемым микроорганизмам, найденным учеными. Возраст предков сине-зеленых водорослей составляет примерно 3,5 млрд лет.
Сине-зеленые водоросли – это единственные бактерии, способные выделять кислород. Правда, для самих водорослей это побочный продукт, но для существования жизни на нашей планете это одно из основных условий.
Сине-зеленые водоросли очень сложно организованы и имеют различные формы и размеры. Эти микроорганизмы способны даже менять свой цвет от темно-синего до светло-зеленого в зависимости от спектрального состава света.
Кроме способности выделять кислород, сине-зеленые водоросли имеют еще одну очень полезную черту – они могут связывать атмосферный азот и делать его доступным для других живых организмов. Эта последняя способность делает сине-зеленые водоросли незаменимыми для всех растений, которые не могут самостоятельно добывать азот из окружающей среды.
Особенности размножения
Размножение прокариотов обычно происходит с помощью простого деления клетки. Изредка встречается метод почкования; отделяющаяся при этом дочерняя клетка гораздо меньше родительской. Поделившиеся клетки зачастую остаются рядом, образуя нитевидную или иную структуру.
Прокариоты
Изучение бактерий привело к открытию горизонтального переноса генов, который был описан в Японии в 1959 г. Этот процесс широко распространен среди прокариот, а также у некоторых эукариот. Открытие горизонтального переноса генов у прокариот заставило по-другому взглянуть на эволюцию жизни. Ранее эволюционная теория базировалась на том, что виды не могут обмениваться наследственной информацией. Прокариоты могут обмениваться генами между собой непосредственно (конъюгация, трансформация) а также с помощью вирусов — бактериофагов (трансдукция).
Содержание
Характерные особенности
История понятия
Монеры
В настоящее время термин «монеры» не применяется.
См. также
Примечания
Полезное
Смотреть что такое «Прокариоты» в других словарях:
ПРОКАРИОТЫ — (от про. и греч. karyon ядро), доядерные организмы, клетки которых не имеют ограниченных мембраной ядер. Прокариоты лишены большинства органоидов. Аналог ядра структура из ДНК, белков и РНК. К прокариотам относятся бактерии, прохлорофитовые… … Экологический словарь
ПРОКАРИОТЫ — ПРОКАРИОТЫ, организмы, не обладающие в отличие от эукариот оформленным клеточным ядром. К прокариотам относятся бактерии, в том числе цианобактерии (сине зеленые водоросли). В системе органического мира прокариоты составляют надцарство … Современная энциклопедия
ПРОКАРИОТЫ — (от лат. pro вперед вместо и греч. karyon ядро), организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром. Генетический материал в виде кольцевой цепи ДНК лежит свободно в нуклеотиде и не образует настоящих хромосом. Типичный… … Большой Энциклопедический словарь
ПРОКАРИОТЫ — (от лат. pro перед, раньше, вместо и греч. karyon ядро), организмы, клетки к рых не имеют ограниченного мембраной ядра все бактерии, включая архебактерий и циано бактерий. Аналог ядра структура, состоящая из ДНК, белков и РНК. Генетич. система П … Биологический энциклопедический словарь
прокариоты — одно из надцарств мира живых существ. В противоположность эукариотам имеют целый ряд отличительных признаков–генетический аппарат их клеток представлен двойной замкнутой нитью ДНК (бактериальной хромосомой), не отделенной мембраной от цитоплазмы; … Словарь микробиологии
Прокариоты — ПРОКАРИОТЫ, организмы, не обладающие в отличие от эукариот оформленным клеточным ядром. К прокариотам относятся бактерии, в том числе цианобактерии (сине зеленые водоросли). В системе органического мира прокариоты составляют надцарство. … Иллюстрированный энциклопедический словарь
ПРОКАРИОТЫ — (prokaryotae, раньше monara), царство, включающее БАКТЕРИИ и ЦИАНОБАКТЕРИИ (раньше назывались сине зелеными ВОДОРОСЛЯМИ). КЛЕТКИ прокариотов более простые, чем клетки других организмов, и не имеют ограниченного мембраною ЯДРА, а ДНК содержится не … Научно-технический энциклопедический словарь
прокариоты — Организмы, клетки которых лишены ограниченного мембраной ядра; аналогом ядра является нуклеоид, генетическая система которого (генофор) соответствует примитивной хромосоме; митоза у П. нет, клетки П. лишены хлоропластов, митохондрий, аппарата… … Справочник технического переводчика
Прокариоты — * пракарыёты * prokaryotes or prokaryotic organisms представители сверхцарства (надцарства), в которое входят архебактерии, эубактерии и цианобактерии (синезеленые водоросли). П. не имеют ограниченных мембраной ядер с хромосомами и обладают… … Генетика. Энциклопедический словарь
прокариоты — ов; мн. [лат. pro перед, вместо, karyon ядро]. Организмы, лишенные оформленного ядра и не делящиеся по принципу деления ядра надвое (например, бактерии, сине зелёные водоросли и т.п.). * * * прокариоты (от лат. pro вперёд, вместо и греч. káryon … Энциклопедический словарь
Прокариоты. Строение, форма клеток, размножение, питание
» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>
Прокариоты
К царству прокариот относятся организмы, которых обычно называют бактериями. Это — наидревнейшая группа, появившаяся примерно 3,5 млрд. лет назад; к тому же это и мельчайшие организмы, обладающие клеточной структурой. Свойства прокариот суммированы в табл. 2.2. Как правило, прокариоты представлены одиночными клетками, хотя сине-зеленые водоросли (цианобактерии, Cyanobacteria) могут образовывать цепочки клеток, называемые нитями.
Некоторые бактерии прилипают друг к другу, образуя характерные скопления, напоминающие гроздья винограда (рис. 2.10), однако объединившиеся клетки остаются абсолютно независимыми друг от друга. Индивидуальную бактериальную клетку можно увидеть только с помощью микроскопа, почему их и называют микроорганизмами. Наука, изучающая бактерий — бактериология — составляет важную ветвь микробиологии.
Бактерии различаются по своим размерам: их длина колеблется от 0,1 до 10 мкм, а диаметр в среднем составляет — 1 мкм. Таким образом, в бактериальной клетке достаточно места, чтобы поперек нее уместилось 200 молекул глобулярных белков среднего размера (5 нм в диаметре).
Поскольку такие молекулы способны диффундировать примерно на расстояние 60 мкм в секунду, никаких специальных механизмов транспорта этим организмам не нужно.
Бактерий можно обнаружить повсюду: в почве, и в пыли, в воде и в воздухе, внутри и на поверхности животных и растений. Некоторые бактерии поселяются в горячих источниках с температурой 78 °С или выше. Другие способны выжить при очень низких температурах и даже пережить определенные периоды замораживания во льду. Встречаются бактерии и в глубоких расселинах на дне океана при очень высоком давлении и температуре 360 °С. С них начинаются уникальные пищевые цепи в этих областях океана.
Число бактерий невообразимо велико; установлено, что в одном грамме плодородной почвы содержится 2,5 млрд. бактерий; в 1 см 3 свежего молока их содержание может превышать 3 млрд. Вместе с грибами бактерии имеют жизненно важное значение для всех других организмов, поскольку, разрушая в результате своей жизнедеятельности органические вещества, они обеспечивают циркуляцию биогенных элементов в природе. Кроме того, они приобретают все более важное значение в жизни человека, и не только потому, что некоторые из них являются возбудителями различных болезней, но и потому, что в силу разнообразия протекающих в них биохимических реакций они могут использоваться во многих биотехнологических процессах.
2.3.1. Строение бактерий
На рис. 2.5 показано строение обобщенной бактерии — типичной прокариотической клетки. На рис. 2.6, А–Г изображена широко известная палочковидная бактерия Escherichia coli. Обычно она совершенно безвредна. Ее наличие в воде может использоваться в качестве очень надежного показателя загрязнения воды фекалиями. Из всех бактерий E. coli изучена лучше всего. Кроме того, это одна из бактерий, генетическая карта которых установлена полностью. Обратите внимание, что у E. coli намного меньше видимых внутриклеточных структур, чем в эукариотической клетке (рис. 5.10 и 5.11). На рис. 2.7 показана другая палочковидная бактерия, у которой в отличие от E. coli имеется жгутик.
Клеточная стенка
Клеточная стенка бактерий — структура довольно прочная и позволяет клетке сохранять свою форму; это обусловлено наличием в ней муреина — молекулы, построенной из параллельных полисахаридных цепей, перекрестно связанных через регулярные интервалы короткими цепями аминокислот. Таким образом, каждая клетка окружена как бы сетчатым мешком, представляющим на деле одну огромную молекулу. Клеточная стенка предохраняет клетку от разрыва при поступлении в нее воды (например, в результате осмоса). Ионы воды и малые молекулы попадают в клетку через мельчайшие поры в клеточной стенке.
В 1884 г. датский биолог Кристиан Грам разработал метод окрашивания, с помощью которого было установлено, что бактерии подразделяются на две естественные группы, что, как теперь стало известно, обусловлено различиями в строении их клеточной стенки. Одни бактерии, окрашивающиеся по Граму, получили название грамположительных, другие, не окрашивающиеся, — грамотрицательных.
У грамположительных бактерий, таких как Staphylococcus, Bacillus и Lactobacillus в муреиновую сетку встроены другие компоненты, в основном полисахариды и белки, что делает клеточную стенку сравнительно толстой. У грамотрицательных бактерий, таких как Salmonella, E.coli и Azotobacter, клеточная стенка тоньше и имеет более сложное строение (рис. 2.8). Муреиновый слой у этих бактерий снаружи покрыт гладким тонким мембраноподобным слоем липидов и полисахаридов, защищающим клетки от лизоцима — антибактериального фермента, содержащегося в слезах, слюне и других биологических жидкостях, а также в белке куриного яйца.
Лизоцим расщепляет полисахаридный каркас муреина, что приводит к продырявливанию клеточной стенки и лизису клетки, т. е. к ее осмотическому набуханию и разрыву. Липидно-полисахаридный слой обусловливает также устойчивость грамотрицательных бактерий к пенициллину. Этот антибиотик блокирует образование перекрестных сшивок в муреине растущих грамположительных бактерий, что делает их клетки более чувствительными к осмотическому шоку.
Плазматическая мембрана, мезосомы и фотосинтетические мембраны
Как и у всех других организмов, живое вещество бактериальной клетки окружено полупроницаемой мембраной. По строению и функциям плазматическая мембрана бактериальных клеток не отличается от плазматических мембран эукариотических клеток (разд. 5.9). Она служит также местом локализации дыхательных ферментов, а у некоторых бактерий она образует мезосомы и(или) фотосинтетические мембраны.
Мезосомы— складчатые структуры, представляющие собой впячивания плазматической мембраны клетки (рис. 2.5). Во время клеточного деления мезосомы, по-видимому, ассоциируются с ДНК, что обеспечивает разделение двух дочерних молекул ДНК после репликации и способствует образованию перегородки между дочерними клетками.
У фотосинтезирующих бактерий в мешковидных, трубчатых или пластинчатых впячиваниях плазматической мембраны содержатся фотосинтетические пигменты (в том числе обязательно бактериохлорофилл). Сходные мембранные образования участвуют и в фиксации азота.
Генетический материал (бактериальная «хромосома»)
Бактериальная ДНК представляет собой одиночную кольцевую молекулу длиной около 1 мм (т. е. она значительно длиннее, чем сама клетка), состоящую примерно из 5 млн. пар оснований.
Суммарное содержание ДНК (геном), а следовательно, и количество закодированной в ней информации, в бактериальной клетке значительно меньше, чем в эукариотической: в типичном случае у бактерии ДНК содержит несколько тысяч генов, что в 500 раз меньше, чем в клетке человека (см. также табл. 2.2 и рис. 2.5).
Рибосомы
Рибосомы служат местом синтеза белков (см. табл. 2.2 и рис. 5.5).
Капсулы
У некоторых бактерий слизистые или клейкие секреты образуют капсулы; капсулы хорошо видны после негативного контрастирования (когда окрашивают не препарат, а фон). Иногда эти секреты служат для формирования колоний из одиночных бактерий. С помощью секретов бактерии приобретают способность прилипать к различным поверхностям, таким как зубы, частицы ила или скалы. Кроме того, капсулы обеспечивают дополнительную защиту для бактериальной клетки. Так, например, капсулированные штаммы пневмококков свободно размножаются в организме человека, вызывая воспаление легких, тогда как некапсулированные штаммы легко атакуются и разрушаются фагоцитами и поэтому совершенно безвредны.
Споры
Некоторые бактерии, главным образом относящиеся к родам Clostridiumи Bacillus, образуют эндоспоры (т. е. споры, которые располагаются внутри клеток). Споры представляют собой толстостенные долгоживущие образования, отличающиеся очень высокой устойчивостью, особенно к нагреванию, коротковолновому облучению и высушиванию. Локализация спор в клетке бывает различной и служит важным признаком для идентификации и классификации бактерий (см. рис. 2.10).
Жгутики
Многие бактерии подвижны, что обусловлено наличием у них одного или нескольких жгутиков. Жгутик — это простой полый цилиндр, образуемый одинаковыми белковыми молекулами.
Несмотря на волнистую форму, они довольно жестки (рис. 2.7). Подвижность бактерий достигается вращением основания жгутика; получается, что жгутик как бы ввинчивается в среду, не совершая беспорядочных биений, и таким образом продвигает бактерию за собой. В качестве примеров бактерий, имеющих жгутики, приведем Rhizobium (один жгутик) и Azotobacter (много жгутиков); обе бактерии участвуют в круговороте азота в природе.
Подвижные бактерии могут передвигаться в ответ на определенные раздражители, т. е. они способны к таксису. Аэробные бактерии, например, перемещаются в направлении увеличения концентрации кислорода в среде (проявляют положительный аэротаксис), а подвижные фотосинтезирующие бактерии плывут к свету (проявляют положительный фототаксис).
Жгутики лучше всего видны в электронном микроскопе при использовании метода напыления (рис. 2.7).
Пили
На клеточной стенке некоторых грамотрицательных бактерий видны многочисленные тонкие палочковидные выросты, которые называются пили, или фимбрии (рис. 2.7). Пили короче и тоньше жгутиков и служат для прикрепления к специфическим клеткам или поверхностям. Известны различные типы пилей, но наибольший интерес вызывают F-пили, участвующие в половом размножении (разд. 2.3.3).
Плазмиды
Помимо единственной молекулы ДНК, имеющейся у всех бактерий, у некоторых из них обнаруживается еще одна или более плазмид (рис. 2.9).
Плазмида — это небольшая кольцевая молекула дополнительной ДНК, способная к саморепликации. Плазмида несет в себе всего несколько генов, обусловливающих повышенную выживаемость клеток. Некоторые плазмиды делают клетку устойчивой к антибиотикам.
Например, в клетках некоторых стафилококков содержится плазмида, несущая ген пенициллиназы — фермента, расщепляющего пенициллин.
В результате клетка оказывается устойчивой к пенициллину. Распространение таких генов при конъюгации находит важное применение в медицине. Известны и другие плазмидные гены, в частности гены,
2.3.2. Форма клеток
Форма бактериальной клетки является одним из важнейших систематических признаков. Четыре основных типа клеток приведены на рис. 2.10. На этом же рисунке указаны как полезные, так и болезнетворные бактерии.
2.3.3. Размножение
Индивидуальный рост и бесполое размножение
Соотношение поверхность/объем у бактериальных клеток очень велико, что способствует быстрому поглощению питательных веществ из окружающей среды за счет диффузии и активного транспорта. Поэтому в благоприятных условиях бактерии способны расти очень быстро. Рост бактериальных клеток в большой степени зависит от таких факторов среды, как температура, наличие питательных веществ, pH среды и концентрация ионов. Кроме того, облигатным аэробам необходим кислород, а облигатным анаэробам необходимо, чтобы его не было.
Достигнув определенных размеров, диктуемых соотношением объемов ядра и цитоплазмы, бактерии переходят к бесполому размножению путем простого деления, т. е. путем деления на две идентичные дочерние клетки (рис. 2.11).
Клеточному делению предшествует репликация ДНК, причем до тех пор, пока процесс репликации не завершится, мезосомы могут удерживать ДНК в определенном положении (рис. 2.5 и 2.6, В). Мезосомы могут прикрепляться и к новым перегородкам, образующимся между дочерними клетками, участвуя каким-то образом в синтезе материала клеточной стенки. У самых быстрорастущих бактерий деление происходит через каждые 20 мин.
Половое размножение
В 1946 г. у бактерий было обнаружено половое размножение, но в самой примитивной форме. Гамет в данном случае не образуется, однако наиважнейшее событие полового размножения, а именно обмен генетическим материалом, происходит и в этом случае. Этот процесс называется генетической рекомбинацией. Генетическая рекомбинация впервые была обнаружена при изучении E.coli. В норме при наличии в среде достаточного количества глюкозы и неорганических солей E.coli сама синтезирует все необходимые ей аминокислоты. В результате облучения этих бактерий у них иногда возникают случайные мутации. Были выделены два типа мутантов: один, не способный синтезировать биотин (витамин) и аминокислоту метионин, и другой — не способный синтезировать аминокислоты треонин и лейцин. В среду, не содержавшую всех четырех факторов роста, помещали по 10 8 клеток каждого мутантного штамма. Теоретически клетки не должны были расти на этой среде. Однако все же было получено несколько сотен колоний (каждая колония возникает из одной исходной клетки), причем оказалось, что в таких клетках имеются все гены, необходимые для образования этих четырех факторов роста. Следовательно, в клетках каким-то образом произошел обмен генетической информацией, но выделить вещество, ответственное за этот процесс, в то время не удалось. В конце концов было установлено (при помощи электронного микроскопа), что клетки E.coli могут непосредственно контактировать друг с другом, т. е. у них может происходит конъюгация (рис. 2.12).
Таким образом, при конъюгации происходит перенос ДНК между клетками в результате прямого контакта. Одна клетка в этом случае служит донором («мужская» клетка), другая — реципиентом («женская» клетка). Способность клетки служить донором определяется генами, содержащимися в особой плазмиде, называемой половым фактором или F-фактором (F от англ. fertility — плодовитость). В этих генах закодирован белок специфических пилей, называемых F-пилями или половыми пилями. F-пили участвуют в межклеточном контакте при конъюгации. Пили — структуры полые и предполагается, что именно по этим пилям осуществляется перенос ДНК от донора (F + ) к реципиенту (F – ).
Процесс этот показан на рис. 2.13.
Hfr-штаммами (от англ. H — High — высокая, f — frequency — частота, r — recombination — рекомбинация), потому что донорная ДНК таких штаммов рекомбинирует с ДНК реципиента.
2.3.4. Питание
Питание — это процесс приобретения энергии и веществ. Основываясь на природе необходимого источника энергии или источника углерода — наиважнейшего элемента для роста, — живые организмы можно подразделить на несколько групп. Для синтеза органических соединений живые организмы способны использовать только два вида энергии: энергию света и энергию химических связей. Организмы, использующие световую энергию, называются фототрофами, а организмы, использующие только химическую энергию — хемотрофами. Фототрофы осуществляют фотосинтез.
Как уже говорилось, организмы разделяют также на автотрофные и гетеротрофные — в зависимости от того, какой источник углерода они используют: неорганическое соединение (диоксид углерода) или разнообразные органические вещества. Таким образом, можно выделить четыре типа питания (табл. 2.3). Среди бактерий встречаются представители всех четырех типов. Наибольшую группу образуют хемогетеротрофные бактерии.
Хемогетеротрофные бактерии
Бактерии этого типа получают энергию из поступающих с пищей химических соединений.
Они способны использовать огромное множество различных веществ. Среди хемогетеротрофных бактерий можно выделить три основные группы, а именно сапротрофы, мутуалисты и паразиты.
Сапротрофы представлены организмами, извлекающими питательные вещества из мертвого разлагающегося материала. Для разложения органического материала сапротрофы выделяют на него ферменты. Таким образом, переваривание пищи у них происходит вне организма. Образующиеся при этом растворимые продукты поступают в тело сапротрофа и там ассимилируются.
Мутуализмом (или симбиозом) называют любую форму тесной взаимосвязи между двумя живыми организмами, выгодной для обоих партнеров. Примером бактериального мутуализма может служить Rhizobium — бактерия, способная фиксировать азот и живущая в корневых клубеньках бобовых растений, например гороха и клевера, или Escherichia coli, обитающая в кишечнике человека и, вероятно, поставляющая человеку витамины группы B и K.
Паразитом называют любой организм, живущий внутри тела или на теле другого организма (хозяина), от которого он получает пищу и, как правило, убежище. Хозяевами могут служить представители самых различных видов, причем паразиты наносят ощутимый вред своим хозяевам. Паразиты, вызывающие болезни, называют патогенами. Некоторые из них приведены на рис. 2.10. Одни паразиты, называемые облигатными, могут жить и расти только в живых клетках. Другие, называемые факультативными, заражают хозяина, вызывают его гибель и затем живут на его остатках как сапротрофы. Паразиты отличаются чрезвычайной разборчивостью в пище, поскольку они нуждаются во «вспомогательных факторах роста», которые не способны синтезировать сами, но могут получать только от своих хозяев.
Фотоавтотрофные бактерии
Примерами фотоавтотрофных бактерий могут служить цианобактерии, называемые также сине-зелеными бактериями. Водоросли и растения также являются фотоавтотрофами. Все они осуществляют фотосинтез и используют углекислый газ (CO2) в качестве единственного источника углерода (табл. 2.3).
Процесс фотосинтеза впервые появился у бактерий, возможно именно у цианобактерий. Как мы увидим далее, хлоропласты водорослей и наземных растений представляют собой, по-видимому, потомков некогда свободноживущих фотосинтезирующих бактерий, поселившихся в свое время в гетеротрофных клетках.
Цианобактерии широко распространены в поверхностных водах морей и пресных водоемов. Кроме того, они обнаружены в слизистых подушковидных образованиях на затененных почвах, на скалах, в иле, на древесине и в некоторых живых организмах. Большинство цианобактерий представлены одиночными клетками, хотя некоторые из них объединяются, образуя покрытые слизью нити, например Anabaena и Spirulina. В отличие от большинства бактерий они, подобно водорослям и растениям, способны к фотосинтезу, а, следовательно, и к выделению кислорода из воды. На рис. 2.14 показано строение типичной цианобактерии Anabaena.
Как видно из рисунка, толщу цитоплазмы характерным образом пронизывают фотосинтетические мембраны, на которых располагаются фотосинтетические пигменты. Пигменты представлены хлорофиллом а, похожим на пигмент растений и водорослей, и специфическим сине-зеленым пигментом фикоцианином. Клетки цианобактерий, как правило, крупнее клеток других бактерий. Способность цианобактерий выделять кислород в процессе фотосинтеза, наличие у них фотосинтетических мембран, и хлорофилл а свидетельствуют о том, что цианобактерии вполне могут быть эволюционным звеном между остальными бактериями и эукариотами.
Некоторые цианобактерии, такие как Anabaena, способны фиксировать азот. Иными словами, они способны превращать содержащийся в воздухе газообразный азот в аммиак, который затем может быть использован для синтеза аминокислот, белков и других азотсодержащих органических соединений. Этот процесс происходит в специализированных клетках, называемых гетероцистами, которые образуются при недостатке азота. Гетероцисты экспортируют содержащиеся в них азотистые вещества в соседние клетки в обмен на другие питательные вещества, например углеводы.
Хемоавтотрофные бактерии
Эти организмы чаще называют хемосинтезирующими бактериями. В качестве источника углерода они используют CO 2 (диоксид углерода), но энергию получают в результате химических реакций. Высвобождение необходимой энергии происходит при окислении таких неорганических веществ, как аммиак и нитриты. Некоторые хемоавтотрофные бактерии играют важную роль в круговороте азота, участвуя в процессе, называемом нитрификацией. Процесс нитрификации протекает в две стадии. На первом этапе аммиак окисляется до нитрита, что сопровождается выделением энергии. Этот этап осуществляется такими, например, бактериями, как Nitrosomonas. На втором этапе образовавшийся нитрит окисляется до нитрата с высвобождением дополнительной энергии. Этот этап осуществляется, например, Nitrobacter
2.3.5. Рост популяции бактерий
2.1. Рассмотрим ситуацию, когда одиночная бактериальная клетка помещена в питательную среду и находится в условиях, оптимальных для роста.
Перепишите табл. 2.4 и заполните ее, исходя из предположения, что эта клетка и все ее потомки делятся каждые 20 мин.
На основе данных заполненной вами таблицы постройте графики.
По вертикальной оси отложите число бактерий (кривая А) и десятичный логарифм этого числа (кривая Б), а по горизонтальной оси — время.
Что можно сказать о форме этих кривых?
Когда число клеток увеличивается, как видно из заполненной вами табл. 2.4, говорят о логарифмическом, экспоненциальном или геометрическом росте. В этом случае мы получим экспоненциальный ряд чисел. Это гораздо легче понять, если посмотреть на строку В в табл. 2.4, где число бактерий выражено в виде числа 2, возведенного в соответствующую степень. Показатель степени можно назвать логарифмом или экспонентной числа 2.
Логарифмы, или экспоненты, образуют линейный ряд 0, 1, 2, 3 и т. д., соответствующий числу генераций.
Вернемся к табл. 2.4; вместо чисел, расположенных в строке А, можно записать их логарифмы по основанию 2 следующим образом:
1. Во время лаг-фазы бактерии адаптируются к новой среде обитания, и поэтому рост пока еще не достигает максимальной скорости. В этот период у бактерий могут, например, синтезироваться новые ферменты, необходимые для усвоения тех питательных веществ, которые содержатся в новой среде.
2. Логарифмическая фаза — это фаза, когда бактерии растут с максимальной скоростью, число клеток увеличивается почти экспоненциально, а кривая роста представляет собой практически прямую.
3. В конце концов рост колонии начинает замедляться, и культура входит в стационарную фазу, когда скорость роста равна нулю и когда резко возрастает конкуренция за пищевые ресурсы. Образование новых клеток замедляется, а затем совсем прекращается. Увеличение числа клеток компенсируется одновременной гибелью других клеток, поэтому число жизнеспособных клеток остается постоянным (табл. 2.5). Переход к этой фазе обусловлен действием нескольких факторов: снижением концентрации питательных веществ в среде, накоплением токсичных продуктов метаболизма, а в случае аэробных бактерий и уменьшением содержания кислорода в среде.
4. Во время последней фазы — фазы замедления роста — ускоряется гибель клеток и прекращается их размножение.