кабель toslink для чего нужен
Для чего нужен Toslink
Toslink – это сокращение, полученное путем слияния слов Toshiba Link. Это также стандарт соединения с помощью оптоволокна, который разработала корпорация Toshiba. TosLink — это также недорогой оптический интерфейс. Его предлагают производителями бытовой звукотехники как хорошую альтернативу коаксиальному соединению.
TOSlink, TosLink и Tos-link и другие варианты написания названия этого оптического интерфейса не меняют сути. Речь все равно идет о торговой марке «Toshiba Corporation». Специалисты утверждают, что точнее было бы называть этот оптический интерфейс оптическим EIAJ, то есть «Electronics Industries Association of Japan».
Это в переводе означает — ассоциация электронной промышленности Японии. Именно она и приняла за стандарт этот интерфейс. Как показывает анализ, широкому применению указанному стандарту у основных производителей электроники способствовали некоторые факторы.
Прежде всего, они уже давно мечтали разработать разъем и кабель, который был бы дешевле коаксиальных разъемов и кабелей. Ко всему интерфейс TosLink должен был упростить для аудиокомпонентов выполнение требований к величине излучаемых помех, которые исходили от FCC («Federal Communications Commissions» — федеральная комиссия США по коммуникациям).
Электрический сигнал, который проходит по меди, такой как сигнал S/PDIF в коаксиальном соединении, создает радиочастотные помехи. Они могут мешать радио- и телевещанию. Вот почему FCC просто наложило запрет на производство изделий, которые не соответствуют ее критериям по излучаемым помехам. Так как TosLink передает сигнал в световой форме по стеклянному или пластиковому волокну, то он не создает радиопомех.
Корпорация Toshiba первоначально разработала Toslink для того, чтобы передавать аудиопоток формата ИКМ между фирменными CD-плеерами и AV-ресиверами. Однако вскоре его адаптировали для большинства CD-плееров, независимо от производителя.
Ранее Toslink системы использовали лишь прямой поток данных от CD-плееров. Однако сегодня он приобрёл наибольшую универсальность стандарт S/PDIF. Например, на DVD-плеерах он служит для того, чтобы передавать цифровой аудиопоток к Dolby Digital/DTS-дешифраторам объёмного звука.
Toslink может иметь несколько различных типов разъёмов. Что касается звуковой аппаратуры, то в подавляющем большинстве случаев применяют разъёмы типа JIS F05 (JIS C5974-1993 F05), у которых квадратная форма.
Оптическая связь обошла High End стороной [перевод]
TOSLINK — это пластиковый оптический кабель, который соединяет выход источника, например CD или DVD-проигрывателя, с декодирующим устройством, таким как ЦАП. Из всех схем подключения цифровых аудиосистем TOSLINK ругают чаще всего, у него дурная репутация.
Действительно, TOSLINK, как правило, ухудшает звучание любой схемы цифрового подключения. Он не может достоверно передать что-либо быстрее, чем 96/24, и имеет тенденцию добавлять джиттер в цифровые аудиосигналы. От того, как выглядит этот пост, вы, наверное, подумаете, что я сделаю все возможное, чтобы удержать вас подальше от TOSLINK. Но все же я не уверен.
Если бы я начал проектировать цифровой интерконнект с чистого листа, моей первой мыслью был бы оптический канал связи, а не коаксиальный кабель, который звучит лучше, как мы все думаем.
Хорошо известно, что часть проблем, связанных с цифровыми системами передачи, не ограничивается одним ЦАПом. Разумеется, можно построить идеальное устройство, которое не обращает никакого внимания на взаимодействие между CD-транспортом и ЦАПом, и все равно слышать разницу в звучании между различными средами (например, коаксиальным и балансным способом). Почему? Потому что качество источника может быть ухудшено простым соединением двух устройств вместе. В самом деле, соединяя вместе всего лишь «земли» двух цифровых аудиопродуктов, можно изменить качество звучания обоих устройств.
Но соедините два устройства оптическим кабелем, и их «земли» никогда не будут контактировать. Одно устройство не будет знать, что оно подключено к другому. Это замечательно. Кроме того, что это не совсем так.
Пластиковые волокна, используемые для передачи света в кабеле TOSLINK, ограничивают скорость, с которой может происходить изменение между светом и тьмой («1» и «0»). Если вы используете кварцевые волокна (стекло), а не пластиковые, вы получаете действительно отличную производительность, но скорость по-прежнему ограничена. Так почему же я выбрал оптику для конструирования моих мифических новых линий передачи цифровых данных? Считается, что в мире большинство высокоскоростных сетей передачи данных используют волоконно-оптические кабели и имеют такую широкую полосу пропускания, что снимает все ограничения на передачу аудиосигналов. В теории — это TOSLINK. Но не на практике.
TOSLINK — это сокращение от Toshiba Link и он был разработан и популяризирован силами компании, в честь которой и назван. Но Toshiba сейчас находится в процессе отказа от ее сильно раскритикованного кабеля, и в скором времени у нас не будет ничего с названием TOSLINK.
Так что если данные в мире все чаще путешествуют по волоконной оптике и пропускная способность этих кабелей превышают потребности даже самых высоких частот дискретизации аудиосигналов, то почему же Toshiba отказывается от TOSLINK и почему мы должны беспокоиться?
Скажи до свидания
Вроде бы логично, что ничего не может быть лучше для гальванической изоляции между двумя устройствами, чем их оптическое соединение. И в самом деле, в первом нашем продукте Digital Lens (середина 90-х), мы соединили оптической связью плату RAM с выходной платой, причем каждая имела свой собственный изолированный источник питания. И это помогло Digital Lens (с регенеративной схемой восстановлением тактовой частоты устройства на базе RAM памяти) показать свои лучшие качества. В то же время одна очень дальновидная (в то время) компания Wadia Digital усиленно продвигала среди High-End-производителей ATT ST — волоконно-оптический стеклянный кабель. Было желание сделать его стандартом для соединения вместе двух частей цифрового аудио. Это была отличная идея. Но это было дорого. Поэтому совсем мало изготовителей дисковых транспортов поддержали ее. И концепция постепенно угасла.
PS Audio была одной из немногих компаний, кто разместил этот дорогой разъем на транспортах и ЦАП — не сулящий никому особых преимуществ (в конечном счете). Но мы верили в этот формат и хотели оказать ему поддержку.
Большинство аудиофилов, когда говорят об оптике, подразумевают TOSLINK. Компания Toshiba хотела сделать предельно дешевый оптический интерфейс. И она это сделала. Собственно, оптика была выбрана потому, что позволяла контролировать интерфейс между оборудованием, не опасаясь шума или зависимости от уровня сигнала. Представьте себе, что на раннем этапе цифрового аудио вы хотите, чтобы ваше устройство подключалось к любому другому. Если вы можете контролировать передатчик (источник сигнала), соединительный кабель и приемник, а также сохранить их электрически изолированными друг от друга, то у вас есть прекрасный шанс достичь цели — совместимости между устройствами, даже если они были произведены не вами. Однако высокое качество трансляции никогда не было целью Toshiba. Но всех остальных целей TOSLINK достигал.
Но если мы абстрагируемся от дешевых реализаций оптических кабелей низкого качества и поймем, что используя правильно сконструированный кабель и устройства приема/передачи данных, там, где это возможно, то нет ничего лучше для цифрового аудио. Оптический метод передачи растет всем мире и уменьшается в сфере аудио. Оптическая связь обошла High End стороной.
Она даже не помахала ему рукой, указывая выход из положения.
Об авторе: Пол МакГоуэн (Paul McGowan) – директор (CEO) и сооснователь компании PS Audio Inc. из города Боулдер, Колорадо, конструирующей и выпускающей High End-аудио продукты и сервисы.
Выход оптический toslink в телевизоре что это
Производители современных телевизоров смогли сделать так, чтобы аудиосигнал, воспроизводимый устройством, был чётким и громким. Однако, некоторых владельцев ТВ-приёмника стандартный звук не устраивает и появляется необходимость вывести аудиосигнал на внешнюю систему, например, домашний кинотеатр.
Как можно вывести звук с телевизора
Для упрощения подсоединения, все устройства оборудованы стандартными разъёмами.
СПРАВКА! Если используется активная акустика, выполнить прямое подключение к ТВ-приёмнмку невозможно.
Вывести звук с ТВ-приёмника можно следующими способами:
TOSlink — как выглядит и где находится?
Квадратный разъём имеет небольшой размер и, как правило, находится на задней крышке ТВ-приёмника. Наличие данного выхода говорит о том, что устройство может принимать многоканальный звук, изначально передающийся на телевизоре. Все современные модели телевизоров и медиасистем оборудованы оптическим аудиовыходом.
Для подсоединения медиасистем к ТВ-приёмнику с помощью разъёма Toslink необходим оптоволоконный кабель. Если выбрать качественный провод, то соединение будет надёжным, качество аудиосигнала хорошим, а эксплуатация долгой.
При выборе необходимо учитывать и характеристики подключаемого устройства, а также имеющиеся на нём разъёмы.
СПРАВКА! Не рекомендуется использовать кабеля длиной более 10 метров. Чем длиннее кабель, тем будет хуже качество звука.
Само подсоединение и дальнейшие настройки очень просты. С помощью кабеля необходимо соединить все устройства, а в звуковых настройках телевизора нужно найти пункт «Динамики» и выбрать «Внешние динамики».
Осуществить подключение кабеля и произвести последующую настройку довольно просто. Выполнив всего несколько действий и потратив минимум времени и средств, можно получить качественное звучание.
TOSLINK (S/PDIF): Преимущества и недостатки оптического аудио-кабеля
Многие аудио и видео устройства, такие как телевизоры, DVD, игровые консоли, ресиверы, также имеют оптический аудиовыход / вход S/PDIF в наборе разъемов. В этом руководстве я постараюсь рассказать вам, стоит ли использовать этот разъем, и если да, то как выбрать лучший оптический кабель?
Чем отличается TOSLINK от S/PDIF?
S/PDIF — это стандарт связи, обозначающий Sony / Philips Digital Interface Format. Он использует два кабеля / разъема: оптоволоконный кабель с разъемами TOSLINK или коаксиальный кабель с разъемами RCA. Что касается фактического сигнала, то они идентичны, однако TOSLINK на коаксиале имеет более высокую нестабильность сигнала (джиттер).
Наиболее современным и часто применяемым является именно оптоволоконный кабель, поэтому, в основном, под понятем «S/PDIF» имеется ввиду именно оптоволокно.
Стоит ли покупать оптический аудиокабель?
Наверное, многие считают, что покупать оптический кабель, например, для телевизора, нет смысла, так как HDMI может передавать и звук, и изображение. И хотя подключение HDMI действительно высокого качества, во многих случаях мы не можем им воспользоваться. В ситуации, когда мы хотим подключить источник звука, например проигрыватель Blu-ray или консоль, к отдельному усилителю или ЦАП, спасением может быть подключение с помощью оптического кабеля стандарта TOSLINK или Mini-TOSLINK.
История оптической передачи информации восходит к началу 1980-х годов и началась с дебюта проигрывателей CD-Audio. Хотя оптоволоконные соединения уже были известны, эта технология появилась на потребительском рынке с внедрением первого полностью цифрового аудио-формата. Стандарт подключения был разработан японской компанией Toshiba, которой мы также обязаны названием стандарта штекера для этих кабелей — TOSLINK (TOS (hiba) LINK).
Недостатки у оптического аудио-кабеля есть
К сожалению, соединение TOSLINK также имеет свои недостатки, поскольку из-за его ограниченной пропускной способности (максимум 125 Мбит/с) через него невозможно передавать потоки DTS-HD Master Audio и Dolby TrueHD. Если мы хотим использовать эти новые кодеки, нам понадобится кабель HDMI.
Что такого особенного в оптическом кабеле?
Прежде всего, он способен передавать объемный сжатый звук 5.1 / 7.1 или передавать стереозвук без потерь в формате PCM (импульсная кодовая модуляция) до 192 кГц / 24 бит. А главное — при этом практически невосприимчив к внешним воздействиям.
Оптический кабель передает звук в цифровом формате (стандарт S/PDIF), используя красный свет с длиной волны 660 нм. Если вы внимательно посмотрите на такой кабель, вы увидите, что он состоит из плотно сплетенного оптического волокна. О качестве оптического кабеля свидетельствует количество волокон, из которых изготовлен весь кабельный жгут. Поскольку мы не имеем дело с электрическими импульсами, оптические кабели не чувствительны к электромагнитным и радиопомехам, поэтому они почти всегда выводят тот же звук, что и полученный от передатчика на выходе источника звука. Это означает, что оптические кабели имеют значительное преимущество в этом отношении по сравнению с кабелями, которые проводят сигнал электрически (гальванически), такими как, например, коаксиальные кабели с сопротивлением 75 Ом. Кроме того, использование оптического кабеля предотвращает заземление двух соединенных вместе устройств, что может вызвать неприятное постоянное шипение или скрип в наушниках и динамиках.
На что обращать внимание при покупке оптического аудиокабеля?
Конечно, главный вопрос — это длина кабеля, которая в соответствии с официальной спецификацией не должна превышать 5 метров, если не используется соответствующий усилитель сигнала. Мнения о максимальной длине передачи сигнала разделились, но наиболее распространены мнения, что сигнал без потерь гарантируется при длине кабеля, не превышающей 50 метров. Это означает, что нам не нужно беспокоиться о том, купим ли мы 5-метровый или 30-метровый TOSLINK. Однако помните, что качество сигнала в этом случае также будет зависеть от класса передающего и приемного устройства и класса используемого усилителя сигнала.
Также стоит обратить внимание на то, какую ленту поддерживает покупаемый нами кабель. Оптимальный диапазон — от 9 МГц до 11 МГц (более высокий диапазон указывает на лучший материал, из которого был изготовлен кабель). Здесь также важен материал, из которого изготовлен наш TOSLINK. Наименьшее место занимает пластик, а наивысшее — боросиликатное стекло. Последний материал можно найти почти исключительно в высококачественных аудиокабелях. Однако цена 1 м такого кабеля может превышать потолок в 15000 рублей.
Как установить такой кабель самостоятельно?
К сожалению, оптические аудиокабели — это не обычные металлические провода, которые можно безнаказанно бросить на пол. Ни при каких обстоятельствах кабели TOSLINK не должны изгибаться, скручиваться или растягиваться, поскольку это может привести к поломке оптического волокна и его безвозвратному повреждению. Разумеется, сломанный оптический кабель нельзя отремонтировать изолентой и паяльником, поэтому после такого повреждения остается только выбросить его в мусорное ведро. Так что, если мы где-то уже прокладываем кабель TOSLINK, делайте это осторожно, а не силой.
Процесс подключение кабеля к устройству достаточно прост. Все, что вам нужно сделать, это снять с наконечника специальную пластиковую крышку и подключить конец кабеля к соответствующему разъему. Но будьте осторожны — пластиковая крышка предназначена не только для защиты вилок от физических повреждений. Очень важным фактором, влияющим на удобство использования этого типа подключения, является чистота. Даже самая крошечная пылинка, если она попадет на вилку TOSLINK, может нарушить или полностью предотвратить передачу сигнала. Вот почему оптические входы и выходы во всех видах аудио- и видео-устройств имеют пластиковую заглушку, которая открывается только тогда, когда необходимо подключить кабель. Отсюда еще один вывод — нередко причиной неработающего оптического входа является небольшая грязь, а не дефект кабеля. Чаще всего достаточно аккуратно сдуть ненужную пыльцу, чтобы все пришло в норму.
Если мы подключим своим кабелем, например, DVD-плеер или приставку с набором динамиков — ничего не остается, кроме как наслаждаться совершенно чистым звуком. К сожалению, мы должны помнить, что если у нас некачественный набор динамиков или плохой усилитель — даже лучший оптический кабель не выдаст чистый звук. В этом случае покупать TOSLINK не стоит и лучше приобрести обычный медный кабель.
Помните, что хорошие оптические кабели раскроют весь свой потенциал в компании с хорошим плеером, усилителем и комплектом динамиков. В конце концов, ваша система будет работать так же хорошо, как работает ее самое слабое звено.
Цифровые аудиоинтерфейсы S/PDIF: что это такое, как работает и зачем нужно
Содержание
Содержание
Аудиозапись на компакт-дисках и сам компакт-диск в начале 80-х представили Philips и Sony. Они же разработали и запатентовали цифровой интерфейс для передачи данных: Sony-Philips Digital Interconnection Format — S/PDIF. В этом материале разбираемся, что это такое и зачем это нужно.
Первоначально S/PDIF был создан для передачи с компакт-диска двухканального звука в цифровом формате. Интерфейс разрабатывали как упрощенный вариант более продвинутого профессионального стандарта AES/EBU. Нужно было заменить массивные XLR-разъемы более привычными, бюджетными и понятными потребителю бытовыми коннекторами, и при этом дать возможность получать с компакт-диска «сырой» цифровой сигнал, без дополнительных преобразований.
Что и как передается по S/PDIF?
Чтобы гарантировать правильную передачу стереозвука с компакт-диска, достаточно было обеспечить скорость 150 Кбайт/с, но разработчики подстраховались и заложили запас по пропускной способности. S/PDIF может передавать не только несжатый стереосигнал с компакт-диска, но и многоканальный звук в формате 5.1 или 7.1 с использованием сжатия. А также некоторое количество дополнительной служебной информации вроде номера дорожки, флага о допустимости копирования, о наличии сжатия, о количестве каналов. Общий поток информации может теоретически достигать 1,536 Мбит/с. Всего-то полтора мегабита в секунду — по современным меркам это смешная цифра.
Еще забавнее изучить протокол изнутри: передача стереозвука была реализована импульсно-кодовой модуляцией PCM. Данные передавались пакетами по 32 бита в каждом, из которых 24 передавали данные, а 8 — служебную информацию. Если данных было меньше (некоторые компакты были записаны в 16 бит), то остаток пакета забивался нулями. Не очень рационально, зато эффективно — транслируемый сигнал тактировался через служебные биты, поэтому мог иметь самую разную частоту дискретизации. И хотя протокол аппаратно поддерживал только передачу стереопотока PCM с конкретными значениями частот дискретизации (32, 44.1 или 48 кГц), в него умудрились впихнуть многоканальность.
DVD-носители аудио и видео используют многоканальный звук формата 5.1 или 7.1, который вполне успешно сжимается по стандарту Dolby и DTS, и передается сквозь изначально стереофонический S/PDIF. Да настолько хорошо сжимается, что битность получается даже ниже, чем 16 бит. Недостающие биты опять же забиваются нулями.
Аппаратная реализация SPDIF-подключения
Наибольшую популярность SPDIF получил в форме электрического кабельного подключения через разъем RCA. Он же «тюльпанчик» или «колокольчик». Если дальность передачи не превышает полуметра, то для подключения можно использовать самый обычный и первый попавшийся кабель RCA-RCA —точно такой же, каким подключалось большинство видеомагнитофонов к телевизору. Но гораздо правильнее подключать SPDIF специальным кабелем с сопротивлением 75 Ом. Его часто называют коаксиальным, вероятно, чтобы подчеркнуть специализированное назначение.
На самом деле, все аудио-видео кабели RCA являются коаксиальными, то есть соосными. В них по центру идет сигнальный провод в изоляции, обернутый в экранный провод. Специальные кабели для подключения SPDIF, те самые на 75 Ом, устроены также. Телевизионный антенный или спутниковый кабель тоже коаксиальный. И разъемы все эти, по большому счету, тоже соосные. Но именно разъем SPDIF почему-то часто маркируют как «coaxial» или «coax».
Если дистанция передачи меньше полуметра, то SPDIF можно коммутировать хоть телефонной «лапшой» — будет работать. Да и в пределах 1.5-2 метров можно обойтись обычным, но качественным RCA-кабелем. А вот дальше потребуется тот самый волшебный коаксиальный кабель на 75 Ом.
Вторая популярная реализация SPDIF —подключение оптоволоконным кабелем и передача сигнала лазерным лучом. Выходы обычно маркируются как OpticalOut или TOSLINK—сокращение от ToshibaLink. Разъемы имеют квадратную форму и закрыты либо вставными заглушками, либо откидными шторками. В портативной электронике встречается модификация MiniTOSLINK в форм-факторе миниджека: в такой разъем можно подключать как обычные наушники, так и оптический кабель.
Кабель (волновод, если точнее) для оптического подключения SPDIF очень легко переломить. Поэтому их часто выпускают с дополнительной защитой, которая ограничивает изгиб, но увеличивает толщину кабеля. Прямой разницы в качестве и дальности передачи звука между толстым и тонким оптическим кабелем нет — первый просто лучше защищен от физического воздействия извне.
Еще бывает S/PDIF в формате Pin header — самая непопулярная реализация для «внутреннего» использования. Это штыревой разъем на материнских платах, аудиокартах, CD-приводах. Нужен для внутреннего подключения или вывода с материнской платы разъема RCA на заднюю панель компьютера. Дальность действия — сантиметров 30, не больше. Разъем обычно двухконтактный для коаксиального подключения и трехконтактный для комбинированного оптического. Лучше свериться с документацией и использовать любой подходящий кабель небольшой длины.
Какой SPDIF лучше: коаксиальный или оптический
Информация передается одинаковая, при любом типе подключения. С этой точки зрения нет никакой разницы, как именно передавать S/PDIF — по электрике или по оптике. Электрическое соединение доступнее: найти лишний кабель RCA-RCA в бытовых запасах обычно проще, чем оптоволокно. С другой стороны, оптическое подключение TOSLINK меньше подвержено помехам и электрическим наводкам, поэтому может использоваться совместно с кучей прочей электрики, например, в автомобиле.
Оптоволокно более хрупкое, при укладке резкими углами и поворотами уместнее проложить коаксиальный кабель. Сматывать и хранить оптоволокно нужно широкой петлей, без перегибов.
По дальности действия победителя тоже нет — максимальная дистанция передачи заявлена в 10 метров для обоих вариантов подключения, а «оверклокеров», которые бы решили побить этот рекорд, не очень много. Хотя на дистанции от пяти метров выигрывает оптика — лазерный луч, в отличие от электросигнала, не затухает.
Эпохи массового применения SPDIF
Первый пик популярности цифрового интерфейса многие пользователи могли и не заметить – это был специальный двухконтактный разъем на задней панели компьютерного CD-привода, через который он подключался к звуковой карте. Звук можно было выводить и через четырехконтактный аналоговый разъем, но в те времена цифро-аналоговый преобразователь в звуковой карте обычно был качественнее, чем в приводе.
Популярность первого пришествия интерфейса S/PDIF сошла на нет в ходе естественного развития компьютерной техники. Когда компьютеры стали достаточно быстры, чтобы обрабатывать цифровой поток аудио в реальном времени, необходимость в отдельном кабельном подключении исчезла — вся информация передавалась по штатному шлейфу IDE. Цифровой выход убрали с задней панели CD-приводов одновременно с кнопкой переключения дорожек, миниджеком и регулировкой громкости на лицевой панели дисковода. Это был конец 90-х.
Второй пик популярности пришелся на первые домашние кинотеатры с многоканальным звуком, еще до появления HDMI. Бытовые DVD-проигрыватели обычно предлагали два варианта вывода звука: либо стереозвук двумя «тюльпанами», либо многоканальный одним разъемом – оптическим или коаксиальным. Разумеется, для подключения был нужен AV-ресивер, который не только умел принимать многоканальный звук по S/PDIF, но и выступал в качестве усилителя. Он же был центром подключений всех источников видео и аудио.
Третий пик мы можем наблюдать сегодня, когда центральным устройством воспроизведения и ядром всей медиасистемы все чаще становится телевизор. Подключить в него можно что угодно, а вот звуковые способности тонкого корпуса невелики, да и для вывода звука предусмотрен только коаксиальный (реже оптический) S/P-DIF. И чтобы подключить к телевизору акустику помощнее, потребуется цифро-аналоговый преобразователь, который сделает из коаксиальной или оптической «цифры» парочку аналоговых «тюльпанов».
И в такой схеме, когда от телевизора до ЦАПа всего несколько сантиметров, нужен не специализированный коаксиальный кабель с точным сопротивлением, а самый обычный бытовой «тюльпан-тюльпан».
Будущее S/PDIF
Несмотря на долгую и непростую историю интерфейса, перспектив у него практически нет: с невысокой скоростью и дальностью передачи данных он вчистую проигрывает современным комбинированным способам передачи звука и видео, пропускная способность которых выражается в десятках гигабит в секунду — HDMI и DisplayPort.
Разъем SPDIF сегодня чаще используется для совместимости с предыдущими поколениями техники, чтобы подключать DVD-проигрыватель, видеомагнитофон, аналоговую акустическую систему и т. д. Вот несколько ключевых особенностей, которые нужно помнить при использовании SPDIF: